Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime

Abstract

In this research, flow boiling heat transfer of zirconia–water nanofluid inside a heat exchanger was experimentally investigated. The system was assessed for heat fluxes ranging from 10 to 150 kW m−2, inlet temperatures of 323 K to 353 K, mass flow rates of 1–10 kg s−1 and mass concentrations of mass% = 0.1 to 0.3%. Results showed that the boiling thermal performance and heat transfer coefficient of zirconia nanofluid are plausible and this nanofluid can be utilized as a coolant inside the two-phase heat exchanging systems. However, the pressure drop associated with the use of zirconia nanoparticles suppressed the thermal efficiency of the system. Likewise, particulate fouling was not observed during the experiments and bubble formation was not affected by the deposition of nanoparticles on the boiling surface. At mass% = 0.3, the boiling heat transfer coefficient was improved by 35.8%; however, pressure drop value was also augmented. Likewise, temperature increased the heat transfer coefficient slightly which was attributed to the improvement in the thermo-physical properties of nanofluid such as thermal conductivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Dhir V. Boiling heat transfer. Annu Rev Fluid Mech. 1998;30(1):365–401.

    Google Scholar 

  2. 2.

    Shadloo M, Oger G, Le Touzé D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids. 2016;136:11–34.

    Google Scholar 

  3. 3.

    Abdi-khanghah M, Alrashed AA, Hamoule T, Behbahani RM, Goodarzi M. Toluene methylation to para-xylene. J Therm Anal Calorim. 2019;135(3):1723–32.

    CAS  Google Scholar 

  4. 4.

    Stephan K, Abdelsalam M. Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf. 1980;23(1):73–87.

    CAS  Google Scholar 

  5. 5.

    Kujawska A, Zajaczkowski B, Wilde L, Buschmann MH. Geyser boiling in a thermosyphon with nanofluids and surfactant solution. Int J Therm Sci. 2019;139:195–216.

    CAS  Google Scholar 

  6. 6.

    Liang G, Mudawar I. Review of pool boiling enhancement with additives and nanofluids. Int J Heat Mass Transf. 2018;124:423–53.

    CAS  Google Scholar 

  7. 7.

    Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface. J Therm Anal Calorim. 2019;135(3):1753–62.

    CAS  Google Scholar 

  8. 8.

    Dell’Agli G, Mascolo G, Mascolo M, Pagliuca C. Microwave-hydrothermal treatment of mechanical mixtures of ZrO2 xerogel and crystalline Y2O3. J Therm Anal Calorim. 2005;80(3):721–5.

    Google Scholar 

  9. 9.

    Sarafraz MM. Experimental investigation on pool boiling heat transfer to formic acid, propanol and 2-butanol pure liquids under the atmospheric pressure. 2013.

  10. 10.

    Seifi AR, Akbari OA, Alrashed AA, Afshary F, Shabani GAS, Seifi R, et al. Effects of external wind breakers of Heller dry cooling system in power plants. Appl Therm Eng. 2018;129:1124–34.

    Google Scholar 

  11. 11.

    Sarafraz M, Nikkhah V, Nakhjavani M, Arya A. Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl Therm Eng. 2017;123:29–39.

    CAS  Google Scholar 

  12. 12.

    Sarafraz M, Peyghambarzadeh S, Alavifazel S. Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat Mass Transf. 2012;48(10):1755–65.

    CAS  Google Scholar 

  13. 13.

    Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    CAS  Google Scholar 

  14. 14.

    Afridi MI, Tlili I, Goodarzi M, Osman M, Khan NA. Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry. 2019;11(5):663.

    CAS  Google Scholar 

  15. 15.

    Sarafraz M, Safaei M, Goodarzi M, Yang B, Arjomandi M. Heat transfer analysis of Ga–In–Sn in a compact heat exchanger equipped with straight micro-passages. Int J Heat Mass Transf. 2019;139:675–84.

    CAS  Google Scholar 

  16. 16.

    Esfe MH, Niazi S, Esforjani SSM, Akbari M. Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid. Heat Transf Res. 2014;45(4).

  17. 17.

    Sarafraz M, Tlili I, Tian Z, Bakouri M, Safaei MR, Goodarzi M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl Sci. 2019;9(10):2101.

    CAS  Google Scholar 

  18. 18.

    Sarafraz M, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene–water/ethylene glycol (WEG 60:40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1929.

    CAS  Google Scholar 

  19. 19.

    Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;1–16.

  20. 20.

    Niazi S, Beni MN. Numerical study of the effect of a nanofluid with nanoparticles of nonuniform size on natural convection in an inclined enclosure. Nanosci Technol Int J. 2017;8(4),

    Google Scholar 

  21. 21.

    Rahmati A, Niazi S, Naderi Beni M, editors. An incompressible generalized lattice Boltzmann method for increasing heat transfer with nanofluids in a square cavity. In: Proceedings of 7th international conference on computational heat and mass transfer, Istanbul, Turkey Yeditepe Universitesi; 2011.

  22. 22.

    Rahmati A, Niazi S. Application and comparison of different lattice Boltzmann methods on non-uniform meshes for simulation of micro cavity and micro channel flow. Comput Methods Eng. 2015;34(1):97–118.

    Google Scholar 

  23. 23.

    Sarafraz M, Arjomandi M. Thermal performance analysis of a microchannel heat sink cooling with copper oxide–indium (CuO/In) nano-suspensions at high-temperatures. Appl Therm Eng. 2018;137:700–9.

    CAS  Google Scholar 

  24. 24.

    Sarafraz M, Arjomandi M. Demonstration of plausible application of gallium nano-suspension in microchannel solar thermal receiver: experimental assessment of thermo-hydraulic performance of microchannel. Int Commun Heat Mass Transf. 2018;94:39–46.

    CAS  Google Scholar 

  25. 25.

    Sarafraz M, Arya H. Arjomandi MJJoML. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. 2018;263:382–9.

    CAS  Google Scholar 

  26. 26.

    Sarafraz MM, Arjomandi M. Contact angle and heat transfer characteristics of a gravity-driven film flow of a particulate liquid metal on smooth and rough surfaces. Appl Therm Eng. 2019;149:602–12.

    CAS  Google Scholar 

  27. 27.

    Sarafraz M, Hart J, Shrestha E, Arya H, Arjomandi M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl Therm Eng. 2019;148:578–90.

    CAS  Google Scholar 

  28. 28.

    Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci. 2019;9(3):463.

    CAS  Google Scholar 

  29. 29.

    Nakhjavani M, Nikounezhad N, Ashtarinezhad A, Shirazi FH. Human lung carcinoma reaction against metabolic serum deficiency stress. Iran J Pharm Res IJPR. 2016;15(4):817.

    CAS  PubMed  Google Scholar 

  30. 30.

    Vakili N, Nakhjavani M, Mirzayi H, Shirazi FH. Studying silibinin effect on human endothelial and hepatocarcinoma cell lines. Res Pharm Sci. 2012;7(5):174.

    Google Scholar 

  31. 31.

    Shirazi FH, Zarghi A, Kobarfard F, Zendehdel R, Nakhjavani M, Arfaiee S, et al. Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. Breast cancer-focusing tumor microenvironment, stem cells and metastasis. London: IntechOpen; 2011.

    Google Scholar 

  32. 32.

    Ebrahim K, Vatanpour H, Zare A, Shirazi FH, Nakhjavani M. Anticancer activity a of caspian cobra (Naja Naja Oxiana) snake venom in human cancer cell lines via induction of apoptosis. Iran J Pharm Res IJPR. 2016;15(Suppl):101.

    PubMed  Google Scholar 

  33. 33.

    Nikounezhad N, Nakhjavani M, Shirazi FH. Cellular glutathione level does not predict ovarian cancer cells’ resistance after initial or repeated exposure to cisplatin. J Exp Ther Oncol. 2017;12(1).

  34. 34.

    Arya A, Sarafraz MM, Shahmiri S, Madani SAH, Nikkhah V, Nakhjavani SM. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Transf. 2018;54(4):985–97.

    CAS  Google Scholar 

  35. 35.

    Nikkhah V, Sarafraz MM, Hormozi F. Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q. 2015;29(3):405–15.

    CAS  Google Scholar 

  36. 36.

    Peyghambarzadeh SM, Sarafraz MM, Vaeli N, Ameri E, Vatani A, Jamialahmadi M. Forced convective and subcooled flow boiling heat transfer to pure water and n-heptane in an annular heat exchanger. Ann Nucl Energy. 2013;53:401–10.

    CAS  Google Scholar 

  37. 37.

    Pourmehran O, Sarafraz MM, Rahimi-Gorji M, Ganji DD. Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J Taiwan Inst Chem Eng. 2018;88:37–48.

    CAS  Google Scholar 

  38. 38.

    Salari E, Peyghambarzadeh M, Sarafraz MM, Hormozi F. Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient. Periodica Polytech Chem Eng. 2016;60(4):252–8.

    CAS  Google Scholar 

  39. 39.

    Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53(1):265–75.

    CAS  Google Scholar 

  40. 40.

    Sarafraz M, Peyghambarzadeh S, Alavi Fazel S, Vaeli N. Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. 2013.

  41. 41.

    Sarafraz MM. Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf. 2012;48(4):611–9.

    CAS  Google Scholar 

  42. 42.

    Sarafraz MM, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Q. 2017;30(4):489–500.

    Google Scholar 

  43. 43.

    Sarafraz MM, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;263:382–9.

    CAS  Google Scholar 

  44. 44.

    Sarafraz MM, Arya H, Saeedi M, Ahmadi D. Flow boiling heat transfer to MgO-therminol 66 heat transfer fluid: experimental assessment and correlation development. Appl Therm Eng. 2018;138:552–62.

    CAS  Google Scholar 

  45. 45.

    Sarafraz MM, Hormozi F, Kamalgharibi M. Sedimentation and convective boiling heat transfer of CuO–water/ethylene glycol nanofluids. Heat Mass Transf. 2014;50(9):1237–49.

    CAS  Google Scholar 

  46. 46.

    Sarafraz MM, Hormozi F, Peyghambarzadeh SM, Vaeli N. Upward flow boiling to DI-water and Cuo nanofluids inside the concentric annuli. J Appl Fluid Mech. 2015;8(4).

  47. 47.

    Sarafraz MM, Nikkhah V, Nakhjavani M, Arya A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: experimental assessment. Exp Therm Fluid Sci. 2018;91:509–19.

    CAS  Google Scholar 

  48. 48.

    Sarafraz MM, Peyghambarzadeh SM. Nucleate pool boiling heat transfer to Al2O3–water and TiO2–water nanofluids on horizontal smooth tubes with dissimilar homogeneous materials. Chem Biochem Eng Q. 2012;26(3):199–206.

    CAS  Google Scholar 

  49. 49.

    Sarafraz MM, Peyghambarzadeh SM. Influence of thermodynamic models on the prediction of pool boiling heat transfer coefficient of dilute binary mixtures. Int Commun Heat Mass Transf. 2012;39(8):1303–10.

    CAS  Google Scholar 

  50. 50.

    Sarafraz MM, Peyghambarzadeh SM. Experimental study on subcooled flow boiling heat transfer to water–diethylene glycol mixtures as a coolant inside a vertical annulus. Exp Therm Fluid Sci. 2013;50:154–62.

    CAS  Google Scholar 

  51. 51.

    Sarafraz S, Peyghambarzadeh MS, Vaeli N. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q CICEQ. 2012;18(2):315–27.

    CAS  Google Scholar 

  52. 52.

    Surzhikov AP, Frangulyan TS, Ghyngazov SA. A thermoanalysis of phase transformations and linear shrinkage kinetics of ceramics made from ultrafine plasmochemical ZrO2(Y)–Al2O3 powders. J Therm Anal Calorim. 2014;115(2):1439–45.

    CAS  Google Scholar 

  53. 53.

    Toghyani S, Afshari E, Baniasadi E, Shadloo M. Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system. Renew Energy. 2019;141:1013–25.

    CAS  Google Scholar 

  54. 54.

    Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2019;135(3):1733–41.

    CAS  Google Scholar 

  55. 55.

    Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transf Eng. 2017;38(9):853–66.

    CAS  Google Scholar 

  56. 56.

    Rahmati AR, Niazi S, Beni MN, editors. Natural convection flow simulation of nanofluid in a square cavity using an incompressible generalized lattice Boltzmann method. Defect and diffusion forum. Clausthal-Zellerfeld: Trans Tech Publ; 2012.

    Google Scholar 

  57. 57.

    Rahimi Gheynani A, Ali Akbari O, Zarringhalam M, Ahmadi Sheikh Shabani G, Alnaqi AA, Goodarzi M et al. Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int J Numer Methods Heat Fluid Flow. 2018.

  58. 58.

    Alrashed AAAA, Akbari OA, Heydari A, Toghraie D, Zarringhalam M, Shabani GAS, et al. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B. 2018;537:176–83. https://doi.org/10.1016/j.physb.2018.02.022.

    CAS  Article  Google Scholar 

  59. 59.

    Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AAAA, Shabani GAS, et al. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29(2):273–82. https://doi.org/10.1016/j.apt.2017.11.013.

    CAS  Article  Google Scholar 

  60. 60.

    Han D, He W, Asif F. Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia. 2017;142:2547–53.

    CAS  Google Scholar 

  61. 61.

    Jafaryar M, Sheikholeslami M, Li Z. CuO–water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2015;336:131–43.

    Google Scholar 

  62. 62.

    Sarafraz M, Fazel AS, Hasanzadeh Y, Arabshamsabadi A, Bahram S. Development of a new correlation for estimating pool boiling heat transfer coefficient of MEG/DEG/water ternary mixture. Chem Ind Chem Eng Q CICEQ. 2012;18(1):11–8.

    CAS  Google Scholar 

  63. 63.

    Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F. Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytech Chem Eng. 2016;60(2):106–22.

    CAS  Google Scholar 

  64. 64.

    Sarafraz M, Peyghambarzadeh S, Hormozi F, Vaelim N. Experimental studies on the pward convective boiling flow to DI-water and CuO nanofluids inside the annulus. J Appl Fluid Mech. 2014;9.

  65. 65.

    Sarafraz MM, Hormozi F. Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Periodica Polytech Chem Eng. 2014;58(1):37–46.

    CAS  Google Scholar 

  66. 66.

    Karthikeyan A, Coulombe S, Kietzig A. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. Int J Heat Mass Transf. 2018;126:287–96.

    CAS  Google Scholar 

  67. 67.

    Babu RV, Verma KA, Charan M, Kanagaraj S. Tweaking the diameter and concentration of carbon nanotubes and sintering duration in Copper based composites for heat transfer applications. Adv Powder Technol. 2018;29:2356–67.

    Google Scholar 

  68. 68.

    Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci. 2016;72:190–6.

    CAS  Google Scholar 

  69. 69.

    Sarafraz M, Hormozi F. Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp Therm Fluid Sci. 2014;52:205–14.

    CAS  Google Scholar 

  70. 70.

    Nikkhah V, Sarafraz MM, Hormozi F, Peyghambarzadeh SM. Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Therm Fluid Sci. 2015;60:83–95. https://doi.org/10.1016/j.expthermflusci.2014.08.009.

    CAS  Article  Google Scholar 

  71. 71.

    Sarafraz M, Hormozi F. Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp Therm Fluid Sci. 2014;53:70–85.

    CAS  Google Scholar 

  72. 72.

    Kline S, McClintock F. Describing uncertainties in single sample experiments. Mech Eng. 1953;75:3.

    Google Scholar 

  73. 73.

    Sarafraz M, Arya A, Hormozi F, Nikkhah V. On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: a comparative study. Appl Therm Eng. 2017;112:1373–81.

    CAS  Google Scholar 

  74. 74.

    Arya H, Sarafraz MM, Arjomandi M. Pool boiling under the magnetic environment: experimental study on the role of magnetism in particulate fouling and bubbling of iron oxide/ethylene glycol nano-suspension. Heat Mass Transf. 2019;55(1):119–32.

    CAS  Google Scholar 

  75. 75.

    Sarafraz M, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2018;142:364–72.

    Google Scholar 

  76. 76.

    Sarafraz MM, Pourmehran O, Yang B, Arjomandi M. Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids. Renew Energy. 2019;136:884–95.

    CAS  Google Scholar 

  77. 77.

    Sarafraz MM, Tlili I, Abdul Baseer M, Safaei MR. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: experimental assessment and efficiency improvement. Appl Sci. 2019;9(9):1877.

    CAS  Google Scholar 

  78. 78.

    Nakhjavani M, Nikkhah V, Sarafraz M, Shoja S, Sarafraz M. Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf. 2017;53(10):3201–9.

    CAS  Google Scholar 

  79. 79.

    Sarafraz M, Nikkhah V, Madani S, Jafarian M, Hormozi F. Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng. 2017;121:388–99.

    CAS  Google Scholar 

  80. 80.

    Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–68.

    Google Scholar 

  81. 81.

    Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5.

    CAS  Google Scholar 

  82. 82.

    Kandlikar SG. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transf. 1990;112(1):219–28.

    CAS  Google Scholar 

  83. 83.

    Sadeghi R, Shadloo M. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2017;71(5):560–74.

    CAS  Google Scholar 

  84. 84.

    Safdari Shadloo M. Numerical simulation of compressible flows by lattice Boltzmann method. Numer Heat Transf Part A Appl. 2019;75(3):167–82.

    Google Scholar 

  85. 85.

    Sadeghi R, Shadloo MS, Hopp-Hirschler M, Hadjadj A, Nieken U. Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media. Comput Math Appl. 2018;75(7):2445–65.

    Google Scholar 

  86. 86.

    Hopp-Hirschler M, Shadloo MS, Nieken U. A smoothed particle hydrodynamics approach for thermo-capillary flows. Comput Fluids. 2018;176:1–19.

    Google Scholar 

  87. 87.

    Fatehi R, Rahmat A, Tofighi N, Yildiz M, Shadloo M. Density-based smoothed particle hydrodynamics methods for incompressible flows. Comput Fluids. 2019;31:051903.

    Google Scholar 

  88. 88.

    Hopp-Hirschler M, Shadloo MS, Nieken U. Viscous fingering phenomena in the early stage of polymer membrane formation. J Fluid Mech. 2019;864:97–140.

    CAS  Google Scholar 

  89. 89.

    Méndez M, Shadloo M, Hadjadj A, Ducoin A. Boundary layer transition over a concave surface caused by centrifugal instabilities. Comput Fluids. 2018;171:135–53.

    Google Scholar 

  90. 90.

    Nguyen MQ, Shadloo MS, Hadjadj A, Lebon B, Peixinho J. Perturbation threshold and hysteresis associated with the transition to turbulence in sudden expansion pipe flow. Int J Heat Fluid Flow. 2019;76:187–96.

    Google Scholar 

  91. 91.

    Lebon B, Nguyen MQ, Peixinho J, Shadloo MS, Hadjadj A. A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe. Phys Fluids. 2018;30(3):031701.

    Google Scholar 

  92. 92.

    Shadloo M, Hadjadj A. Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: a numerical study. Numer Heat Transf Part A Appl. 2017;72(1):40–53.

    CAS  Google Scholar 

  93. 93.

    Shadloo M, Hadjadj A, Chaudhuri A, Ben-Nasr O. Large-eddy simulation of a spatially-evolving supersonic turbulent boundary layer at M = 2. Eur J Mech B/Fluids. 2018;67:185–97.

    Google Scholar 

  94. 94.

    Sharma S, Shadloo M, Hadjadj A. Effect of thermo-mechanical non-equilibrium on the onset of transition in supersonic boundary layers. Heat Mass Transf. 2018:1–13.

Download references

Acknowledgements

The first author of this work tends to appreciate the University of Semnan for sharing the facility. The first author also acknowledges the microfluidics laboratory at the University of Adelaide for sharing the facility. Also, Rayan Sanat CO. is acknowledged for sharing the machinery for fabricating the heat exchanger. Dr. Zhe Tian acknowledges the NSFC (51709244), Taishan Scholar (tsqn201812025) and Fundamental Research for Central Universities (201941008). Dr. Ahmad Raza Khan would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under the Project Number No. 1440-108.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarafraz, M.M., Tlili, I., Tian, Z. et al. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim 139, 2413–2422 (2020). https://doi.org/10.1007/s10973-019-08435-x

Download citation

Keywords

  • Zirconia/water nanofluid
  • Flow boiling
  • Annulus
  • Bubble formation