Skip to main content
Log in

Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization and melting behaviors and mechanical properties of isotactic polypropylene (iPP) containing a certain amount of stearic acid-modified calcium sulfate whiskers (S-CSW) and dicyclohexyl-terephthalamide (TMB-5) were investigated. The results revealed that S-CSW and TMB-5 had obvious synergistic nucleation effect in iPP. At the optimum addition concentration, the crystallization peak temperature of nucleated iPP increased by 8.1 °C compared with that of pure iPP, and the relative content of β-crystals in iPP reached to 0.9012. The impact strength, tensile strength and flexural modulus of iPP increased by approximately 61.8%, 1.71% and 26.1%, respectively, which were obviously better than that of iPP nucleated with S-CSW or TMB-5 independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torre J, Cortázar M, Gómez MA, Marco C, Ellis G, Riekel C, Dumas P. Nature of the crystalline interphase in sheared IPP/vectra fiber model composites by microfocus X-ray diffraction and IR microspectroscopy using synchrotron radiation. Macromolecules. 2006;39(16):5564–8.

    CAS  Google Scholar 

  2. Zhou PZ, Zhang YF, Lin XF. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.

    CAS  Google Scholar 

  3. Chen Y, Yin Q, Zhang X, Xue X, Jia H. The crystallization behaviors and rheological properties of polypropylene/graphene nanocomposites: the role of surface structure of reduced graphene oxide. Thermochim Acta. 2018;661:124–36.

    CAS  Google Scholar 

  4. Fanegas N, Gómez M, Marco C, Jiménez I, Ellis G. Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer. 2007;48(18):5324–31.

    CAS  Google Scholar 

  5. Zhang YF, He B, Hou HH, Guo LH. Isothermal crystallization of isotactic polypropylene nucleated with a novel aromatic heterocyclic phosphate nucleating agent. J Macromol Sci Part B. 2017;56(11–12):811–20.

    CAS  Google Scholar 

  6. Weon JI, Sue HJ. Mechanical properties of talc-and CaCO3-reinforced high-crystallinity polypropylene composites. J Mater Sci. 2006;41(8):2291–300.

    CAS  Google Scholar 

  7. Avella M, Cosco S, Lorenzo MLD, Pace ED, Errico ME, Gentile G. iPP based nanocomposites filled with calcium carbonate nanoparticles: structure/properties relationships. Macromol Symp. 2006;234(1):156–62.

    CAS  Google Scholar 

  8. Wang Y, Li Y, Yuan A, Yuan B, Lei X, Ma Q, Han J, Wang J, Chen J. Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method. Cryst Res Technol. 2014;49(10):800–7.

    CAS  Google Scholar 

  9. Sargut ST, Sayan P, Kiran B. Gypsum crystallization in the presence of Cr3+ and citric acid. Chem Eng Technol. 2010;33(5):804–11.

    CAS  Google Scholar 

  10. Yuan W, Cui J, Cai Y, Xu S. A novel surface modification for calcium sulfate whisker used for reinforcement of poly (vinyl chloride). J Polym Res. 2015;22(9):173.

    Google Scholar 

  11. Dou Q, Duan J. Melting and crystallization behaviors, morphology, and mechanical properties of β-polypropylene/polypropylene-graft-maleic anhydride/calcium sulfate whisker composites. Polym Compos. 2016;37(7):2121–32.

    CAS  Google Scholar 

  12. Liu C, Zhao Q, Wang Y, Shi P, Jiang M. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum. Appl Surf Sci. 2016;360:263–9.

    CAS  Google Scholar 

  13. Yuan W, Cui J, Xu S. Mechanical properties and interfacial interaction of modified calcium sulfate whisker/poly (vinyl chloride) composites. J Mater Sci Technol. 2016;32(12):1352–60.

    Google Scholar 

  14. Yang JN, Nie SB. Effects of calcium sulfate whisker on the mechanical property, morphological structure and thermal degradation of poly (lactic acid) composites. Polym Degrad Stabil. 2017;144:270–80.

    CAS  Google Scholar 

  15. Wang J, Yang K, Lu S. Preparation and characteristic of novel silicone rubber composites based on organophilic calcium sulfate whisker. High Perform Polym. 2011;23(2):141–50.

    CAS  Google Scholar 

  16. Zare Y. The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology. Compos A Appl Sci Manuf. 2016;91:127–32.

    CAS  Google Scholar 

  17. Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A. Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci. 2012;125(4):2882–9.

    CAS  Google Scholar 

  18. Meng MR, Dou Q. Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci B. 2009;48(2):213–25.

    CAS  Google Scholar 

  19. Dang L, Nai X, Zhu D, Xu N, Dong Y, Li W. Effects of different compatilizers on mechanical, crystallization and thermal properties of polypropylene/magensium oxysulfate whisker composites. J Adhes Sci Technol. 2017;31(16):1839–57.

    CAS  Google Scholar 

  20. Zhu D, Nai X, Lan S, Bian S, Liu X, Li W. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process. Appl Surf Sci. 2016;390:25–30.

    CAS  Google Scholar 

  21. Dong F, Liu J, Tan H, Wu C, He X, He P. Preparation of calcium sulfate hemihydrate and application in polypropylene composites. J Nanosci Nanotechnol. 2017;17(9):6970–5.

    CAS  Google Scholar 

  22. Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131(2):1483–90.

    CAS  Google Scholar 

  23. Yang S, Li Y, Liang YY, Wang WJ, Luo Y, Xu JZ, Li ZM. Graphene oxide induced isotactic polypropylene crystallization: role of structural reduction. RSC Adv. 2016;6(28):23930–41.

    CAS  Google Scholar 

  24. Jiang C, Zhao S, Xin Z. Influence of a novel β-nucleating agent on the structure, mechanical properties, and crystallization behavior of isotactic polypropylene. J Thermoplast Compos Mater. 2015;28(5):610–29.

    CAS  Google Scholar 

  25. Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1, 3, 5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.

    CAS  Google Scholar 

  26. Lotz B, Graff S, Straupe C, Wittmann J. Single crystals of γ phase isotactic polypropylene: combined diffraction and morphological support for a structure with non-parallel chains. Polymer. 1991;32(16):2902–10.

    CAS  Google Scholar 

  27. Lotz B, Wittmann J, Lovinger A. Structure and morphology of poly (propylenes): a molecular analysis. Polymer. 1996;37(22):4979–92.

    CAS  Google Scholar 

  28. Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.

    CAS  Google Scholar 

  29. Varley RJ, Dell’Olio M, Yuan Q, Khor S, Leong K, Bateman S. Different β nucleants and the resultant microstructural, fracture, and tensile properties for filled and unfilled ISO polypropylene. J Appl Polym Sci. 2013;128(1):619–27.

    CAS  Google Scholar 

  30. Ma LF, Wang WK, Bao RY, Yang W, Xie BH, Yang MB. Toughening of polypropylene with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene-propylene-diene rubber blends. Mater Des. 2013;51:536–43.

    CAS  Google Scholar 

  31. Jones AT, Aizlewood JM, Beckett D. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75(1):134–58.

    Google Scholar 

  32. Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, de Jeu WH. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer. 2008;49(13–14):3076–83.

    CAS  Google Scholar 

  33. Fillon B, Thierry A, Wittmann J, Lotz B. Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. Polym Sci B Polym Phys. 1993;31(10):1407–24.

    CAS  Google Scholar 

  34. Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1, 3, 5-benzenetricarboxylic acid tris (phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295(4):619–26.

    CAS  Google Scholar 

  35. Dong M, Guo ZX, Yu J, Su ZQ. Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene. J Polym Sci B Polym Phys. 2009;47(3):314–25.

    CAS  Google Scholar 

  36. Ren XQ, Zhang YF, He J, Li Y. Nucleation effect of adipic acid metal salts in isotactic polypropylene. J Therm Anal Calorim. 2019;135(6):3321–8.

    CAS  Google Scholar 

  37. Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74(10):2357–68.

    CAS  Google Scholar 

  38. Zhang ZS, Wang CG, Meng YZ, Mai KC. Synergistic effects of toughening of nano-CaCO3 and toughness of β-polypropylene. Compos A Appl Sci Manuf. 2012;43(1):189–97.

    Google Scholar 

  39. Xu W, Yu MW, Shi SH, Shi H, Nie M. Simultaneous durability and strength enhancement of β-polypropylene through montmorillonite and melt-soluble β-nucleating agent addition. Polym Test. 2018;65:150–5.

    CAS  Google Scholar 

  40. Naffakh M, Díez-Pascual AM, Marco C, Ellis G. Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: mechanical, tribological and rheological properties. Mater Chem Phys. 2014;144(1–2):98–106.

    CAS  Google Scholar 

  41. Li J, Cheung W. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer. 1998;39(26):6935–40.

    CAS  Google Scholar 

  42. Li J, Cheung W, Jia D. A study on the heat of fusion of β-polypropylene. Polymer. 1999;40(5):1219–22.

    CAS  Google Scholar 

  43. Mihajlović S, Daković A, Sekulić Ž, Jovanović V, Vučinić D. Influence of the modification method on the surface adsorption of stearic acid by natural calcite. J Serb Chem Soc. 2009;67:1–19.

    Google Scholar 

  44. Xiang G, Liu T, Zhang Y, Xue N. Synthesis of polypropylene composites with modified calcium sulfate whisker prepared from shale vanadium neutralization slag. Results Phys. 2018;10:28–35.

    Google Scholar 

  45. Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2016;128(2):925–35.

    Google Scholar 

  46. Di Lorenzo M, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Google Scholar 

  47. Supaphol P. Nonisothermal bulk crystallization and subsequent melting behavior of syndiotactic polypropylenes: crystallization from the melt state. J Appl Polym Sci. 2000;78(2):338–54.

    CAS  Google Scholar 

  48. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules. 1998;31(3):807–14.

    CAS  Google Scholar 

  49. Sun X, Li H, Wang J, Yan S. Shear-induced interfacial structure of isotactic polypropylene (iPP) in iPP/fiber composites. Macromolecules. 2006;39(25):8720–6.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294) and the Research Innovation Program for College Graduates of Changsha University of Science and Technology (No. CX2018SS17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YF., Lin, XF., Li, Y. et al. Synergistic nucleation effect of calcium sulfate whisker and β-nucleating agent dicyclohexyl-terephthalamide in isotactic polypropylene. J Therm Anal Calorim 139, 343–352 (2020). https://doi.org/10.1007/s10973-019-08424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08424-0

Keywords

Navigation