Skip to main content
Log in

Thermal analysis methods to study the reservoir bitumens

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The bitumen-containing reservoir rocks taken from Devonian terrigenous formation of Romashkino and Bavly oil fields (Russia) were sampled and investigated using thermal analysis methods. It was shown that thermal analysis methods allow to characterize the bitumen-containing rocks in whole, taking into account both soluble and insoluble parts of bitumen and mineral composition of rocks. It was established that the soluble part of reservoir bitumen (bitumen extract) had heavy fractional composition and was enriched with asphaltenes and asphaltene-like particles prone to formation of carbene–carboid compounds (compounds insoluble in the used solvents). When the soluble bitumen was extracted, there was insoluble organic matter on the rock, which, likely, was carbene–carboid compounds dropped out of bitumen system. It was shown that carbene–carboid compounds, in contrast to the asphaltenes, are poor in hydrogen, more carbonized and heat resistant. The assumption was made that the redistribution of the carbene–carboid compounds in the oil reservoir—in the reservoir rock or within bitumen—can indicate the mechanisms of formation of phase-migration series bitumens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kok MV, Gul KG. Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. J Therm Anal Calorim. 2013;114:269–75.

    Article  CAS  Google Scholar 

  2. Masson J-F, Polomark GM, Collins P. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning. Energy Fuels. 2002;16(2):470–6.

    Article  CAS  Google Scholar 

  3. Mothe MG, Mothe CG, de Carvalho CHM, de Oliveira MCK. Thermal investigation of heavy crude oil by simultaneous TG–DSC–FTIR and EDXRF. J Therm Anal Calorim. 2013;113:525–31.

    Article  CAS  Google Scholar 

  4. Mothe MG, de Carvalho CHM, Sérvulo EFC, Mothé CG. Kinetic study of heavy crude oils by thermal analysis. J Therm Anal Calorim. 2013;111:663–8.

    Article  CAS  Google Scholar 

  5. Nassar NN, Hassan A, Luna G, Pereira-Almao P. Comparative study on thermal cracking of Athabasca bitumen. J Therm Anal Calorim. 2013;114:465–72.

    Article  CAS  Google Scholar 

  6. Wang Z, Wang Q, Jia C. Structural changes in oil sand bitumen during pyrolysis. J Therm Anal Calorim. 2017;127:2215–23.

    Article  CAS  Google Scholar 

  7. Yusupova TN, Petrova LM, Mukhametshin RZ, Romanov GV, Foss TR, Ganeeva YM. Distribution and composition of organic matter in oil- and bitumen-containing rocks in deposits of different ages. J Therm Anal Calorim. 1999;55:99–107.

    Article  CAS  Google Scholar 

  8. You Y, Han X, Liu J, Jiang X. Structural characteristics and pyrolysis behaviors of huadian oil shale kerogens using solid-state 13C NMR, Py-GCMS and TG. J Therm Anal Calorim. 2018;131:1845–55.

    Article  CAS  Google Scholar 

  9. Wang W, Li S, Li L, Ma Y, Yue C, He J. Pyrolysis characteristics of a North Korean oil shale. Pet Sci. 2014;11:432–8.

    Article  CAS  Google Scholar 

  10. Wang Z, Liu X, Wang Y, Liu L, Wang H, Deng S, Sun Y. Studies on the co-pyrolysis characteristics of oil shale and spent oil shale. J Therm Anal Calorim. 2016;123:1707–14.

    Article  CAS  Google Scholar 

  11. Kok MV. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91(3):763–73.

    Article  CAS  Google Scholar 

  12. Ertunc G, Kok MV. Determination of kinetic parameters of different origin coals using software. J Therm Anal Calorim. 2015;119:1407–13.

    Article  CAS  Google Scholar 

  13. Cebulak S, Karcsewska A, Mazurek A, Langier-Kuzniarowa A. Kerogen as a geochemical marker of the thermal history of rocks. J Therm Anal Calorim. 1997;48:163–75.

    Article  CAS  Google Scholar 

  14. Elbeyli IY, Piskin S. Combustion and pyrolysis characteristics of Tuncbilek lignite. J Therm Anal Calorim. 2006;83:721–6.

    Article  CAS  Google Scholar 

  15. Deng J, Zhao J, Huang AC, Zhang Y, Wang CP, Shu CM. Thermal behavior and microcharacterization analysis of second-oxidized coal. J Therm Anal Calorim. 2017;127:439–48.

    Article  CAS  Google Scholar 

  16. Hwang RS, Teerman S, Carlson R. Geochemical comparison of reservoir solid bitumens with diverse origins. Org Geochem. 1998;29:505–18.

    Article  CAS  Google Scholar 

  17. Lomando AJ. The influence of solid reservoir bitumen on reservoir quality. AAPG Bull. 1992;76:1137–52.

    CAS  Google Scholar 

  18. Hou Y, Liang Y, He S, Liu Y, Fan Z, Song Y. Distribution and thermal maturity of Devonian carbonate reservoir solid bitumen in Desheng area of Guizhong Depression, South China. Geofluids. 2017. https://doi.org/10.1155/2017/4580416.

    Article  Google Scholar 

  19. Rogers MA, McAlary JD, Bailey NJL. Significance of reservoir bitumens to thermal-maturation studies, Western Canada Basin. AAPG Bull. 1974;5:1806–24.

    Google Scholar 

  20. Wilhelms A, Larter SR. Origin of tar mats in petroleum reservoirs. Part II: formation mechanisms for tar mats. Mar Pet Geol. 1994;11:442–56.

    Article  CAS  Google Scholar 

  21. Zhang M, Zhang J. Geochemical characteristics and origin of tar mats from the Yaha Field in Tarim Basin, China. Chin J Geochem. 1999;18(3):250–7.

    Article  CAS  Google Scholar 

  22. Hirschberg A. Role of asphaltenes in compositional of reservoir’s fluid column. J Pet Technol. 1988;40(1):89–94.

    Article  CAS  Google Scholar 

  23. Shi C, Cao J, Tan X, Luo B, Zeng W, Hu W. Discovery of oil bitumen co-existing with solid bitumen in the Lower Cambrian Longwangmiao Giant Gas Reservoir, Sichuan Basin, Southwestern China: implications for hydrocarbon accumulation process. Org Geochem. 2017;108:61–81.

    Article  CAS  Google Scholar 

  24. Zuo JY, Mullins OC, Mishra V, Garcia G, Dong C, Zhang D. Asphaltene grading and tar mats in oil reservoirs. Energy Fuels. 2012;26(3):1670–80.

    Article  CAS  Google Scholar 

  25. Yusupova TN, Petrova LM, Ganeeva YM, Romanova UG, Romanov GV, Mukhametshin RZ, Muslimov RZ, Manapov RA. High-viscous heavy oil formation features in laminated heterogeneous layers by exploitation. In: Proceedings 7th Unitar international conference on heavy crude and tar sands. October 27–30, 1998, Beijing, China. vol. 164; 1998. p. 1555–60.

  26. Goldberg IS. Natural Bitumens in the USSR (Regularities of formation and localization). Leningrad: Nedra; 1981 (in Russian).

    Google Scholar 

  27. Labus M. Thermal methods implementation in analysis of fine-grained rocks containing organic matter. J Therm Anal Calorim. 2017;129:965.

    Article  CAS  Google Scholar 

  28. Moine EC, Bouamoud R, El Hamidi A, Khachani M, Halim M, Arsalane S. Mineralogical characterization and non-isothermal pyrolysis kinetics of Moroccan Rif oil shale. J Therm Anal Calorim. 2018;131:993–1004.

    Article  CAS  Google Scholar 

  29. Yusupova TN, Petrova LM, Ganeeva YM, Lifanova EV, Romanov GV. Use of thermal analysis in identification of Tatarstan crude oils. Pet Chem. 1999;39(4):227–32.

    Google Scholar 

  30. Yusupova TN, Ganeeva YM, Okhotnikova ES, Romanov GV. The use of thermal analysis methods for monitoring the development of Bitumen reservoirs using thermal recovery technologies. J Therm Anal Calorim. 2018;131(2):1405–11.

    Article  CAS  Google Scholar 

  31. Kayukova GP, Gubaidullin AT, Petrov SM, Romanov GV, Petrukhina NN, Vakhin AV. Changes of asphaltenes’ structural phase characteristics in the process of conversion of heavy oil in the hydrothermal catalytic system. Energy Fuels. 2016;30(2):773–83.

    Article  CAS  Google Scholar 

  32. Uglev VV, Bogolubov VM. Thermal analysis of oil asphaltenes and other bitumoids. In: Kamianov VF, editor. Proceedings of the study of the composition and properties of oil components. Tomsk; 1983. p. 111–116 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia M. Ganeeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeeva, Y.M., Yusupova, T.N. & Okhotnikova, E.S. Thermal analysis methods to study the reservoir bitumens. J Therm Anal Calorim 139, 273–278 (2020). https://doi.org/10.1007/s10973-019-08410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08410-6

Keywords

Navigation