Skip to main content
Log in

An updated review on the nanofluids characteristics

Preparation and measurement methods of nanofluids thermal conductivity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanofluids have attracted the attention of researchers in recent years considerably. Due to the increasing number of articles on nanofluids, they need to be reviewed. Thermal conductivity is one of the most important properties of nanofluids. There are many methods for preparing nanoparticles and nanofluids that are used by numerous researchers in their experimental studies. There are also several different approaches to measure nanoparticles thermal conductivity (NPTC). In this article, the methods for preparing nanoparticles are discussed. Further, nanofluid preparation methods are studied. Subsequently, the papers in which NPTC has been considered are briefly reviewed and some explanations are provided for hybrid nanofluids. Finally, a variety of methods for measuring NPTC are considered. In existing methods, the hot-wire method is the most widely used, and most researchers have employed this method to measure the NPTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hemmat Esfe M, Rahimi Raki H, Sarmasti Emami MR, Afrand M. Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 2019;342:808–16.

    CAS  Google Scholar 

  2. Nafchi PM, Karimipour A, Afrand M. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Phys A Stat Mech Appl. 2019;516:1–18.

    CAS  Google Scholar 

  3. Khodadadi H, Toghraie D, Karimipour A. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 2019;342:166–80.

    CAS  Google Scholar 

  4. Águila B, Vasco DA, Galvez P, Zapata PA. Effect of temperature and CuO-nanoparticle concentration on the thermal conductivity and viscosity of an organic phase-change material. Int J Heat Mass Trans. 2018;120:1009–19.

    Google Scholar 

  5. Paul G, Chopkar M, Manna I, Das P. Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev. 2010;14:1913–24.

    CAS  Google Scholar 

  6. Dalkılıç AS, Açıkgöz Ö, Küçükyıldırım BO, Eker AA, Lüleci B, Jumpholkul C, et al. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int Commun Heat Mass Trans. 2018;97:30–8.

    Google Scholar 

  7. Kiruba R, Vinod S, Zaibudeen AW, Solomon RV, Philip J. Stability and rheological properties of hybrid γ-Al2O3 nanofluids with cationic polyelectrolyte additives. Colloids Surf A Physicochem Eng Asp. 2018;555:63–71.

    CAS  Google Scholar 

  8. Moldoveanu GM, Ibanescu C, Danu M, Minea AA. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: an experimental study. J Mol Liq. 2018;253:188–96.

    CAS  Google Scholar 

  9. Akilu S, Baheta AT, Said MAM, Minea AA, Sharma KV. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol Energy Mater Solar Cells. 2018;179:118–28.

    CAS  Google Scholar 

  10. Ahmadi Nadooshan A, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    CAS  Google Scholar 

  11. Hamid KA, Azmi W, Nabil M, Mamat R, Sharma K. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int J Heat Mass Trans. 2018;116:1143–52.

    CAS  Google Scholar 

  12. Zeroual S, Loulijat H, Achehal E, Estellé P, Hasnaoui A, Ouaskit S. Viscosity of Ar-Cu nanofluids by molecular dynamics simulations: effects of nanoparticle content, temperature and potential interaction. J Mol Liq. 2018;268:490–6.

    CAS  Google Scholar 

  13. Ghasemi S, Karimipour A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid. Appl Therm Eng. 2018;128:189–97.

    CAS  Google Scholar 

  14. Żyła G, Fal J, Bikić S, Wanic M. Ethylene glycol based silicon nitride nanofluids: an experimental study on their thermophysical, electrical and optical properties. Physica E Low Dimens Syst Nanostruct. 2018;104:82–90.

    Google Scholar 

  15. Dalkılıç AS, Yalçın G, Küçükyıldırım BO, Öztuna S, Akdoğan Eker A, Jumpholkul C, et al. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int Commun Heat Mass Trans. 2018;99:18–25.

    Google Scholar 

  16. Oster K, Hardacre C, Jacquemin J, Ribeiro APC, Elsinawi A. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). J Mol Liq. 2018;253:326–39.

    CAS  Google Scholar 

  17. Żyła G, Vallejo JP, Lugo L. Isobaric heat capacity and density of ethylene glycol based nanofluids containing various nitride nanoparticle types: an experimental study. J Mol Liq. 2018;261:530–9.

    Google Scholar 

  18. Sang L, Liu T. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles. Solar Energy Mater Solar Cells. 2017;169:297–303.

    CAS  Google Scholar 

  19. Qiao G, Lasfargues M, Alexiadis A, Ding Y. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids. Appl Therm Eng. 2017;111:1517–22.

    CAS  Google Scholar 

  20. Alnaqi AA, Aghakhani S, Pordanjani AH, Bakhtiari R, Asadi A, Tran M-D. Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect. Int J Heat Mass Trans. 2019;133:256–67.

    CAS  Google Scholar 

  21. Al-Rashed AAAA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Physica A Statist Mech Appl. 2019;521:724–36.

    CAS  Google Scholar 

  22. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  23. hajatzadeh A, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. Int J Mech Sci. 2018;152:99–117.

    Google Scholar 

  24. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7982-4.

    Article  Google Scholar 

  25. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    CAS  Google Scholar 

  26. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135(2):1031–45.

    CAS  Google Scholar 

  27. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-06-2018-0277.

    Article  Google Scholar 

  28. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Physics reports, 2018.

  29. Bayati B, Babaluo A, Karimi R. Hydrothermal synthesis of nanostructure NaA zeolite: the effect of synthesis parameters on zeolite seed size and crystallinity. J Eur Ceram Soc. 2008;28:2653–7.

    CAS  Google Scholar 

  30. Rumyantseva M, Kovalenko V, Gaskov A, Pagnier T, Machon D, Arbiol J, et al. Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostructure characterization. Sens Actuators B Chem. 2005;109:64–74.

    CAS  Google Scholar 

  31. Yu L, Yu XY, Lou XW. The design and synthesis of hollow micro-/nanostructures: present and Future Trends. Adv Mater. 2018;30:1800939.

    Google Scholar 

  32. Vishnukumar P, Vivekanandhan S, Misra M, Mohanty A. Recent advances and emerging opportunities in phytochemical synthesis of ZnO nanostructures. Mater Sci Semicond Process. 2018;80:143–61.

    CAS  Google Scholar 

  33. Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol. 2009;3:32–41.

    CAS  PubMed  Google Scholar 

  34. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–946.

    CAS  PubMed  Google Scholar 

  35. Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater. 2010;22:1039–59.

    CAS  PubMed  Google Scholar 

  36. Polshettiwar V, Nadagouda MN, Varma RS. Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem. 2009;62:16–26.

    CAS  Google Scholar 

  37. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al 2 O 3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Trans. 2018;117:474–86.

    CAS  Google Scholar 

  38. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    CAS  Google Scholar 

  39. Keyvani M, Afrand M, Toghraie D, Reiszadeh M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. J Mol Liq. 2018;266:211–7.

    CAS  Google Scholar 

  40. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    CAS  Google Scholar 

  41. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    CAS  Google Scholar 

  42. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    CAS  Google Scholar 

  43. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe 3 O 4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Trans. 2016;76:171–7.

    Google Scholar 

  44. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35.

    CAS  Google Scholar 

  45. Esfe MH, Saedodin S, Yan W-M, Afrand M, Sina N. Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles. J Therm Anal Calorim. 2016;124:455–60.

    Google Scholar 

  46. Mohamed SG, Hussain I, Shim J-J. One-step synthesis of hollow C-NiCo 2 S 4 nanostructures for high-performance supercapacitor electrodes. Nanoscale. 2018;10:6620–8.

    CAS  PubMed  Google Scholar 

  47. Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Trans. 2018;127:450–7.

    CAS  Google Scholar 

  48. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    CAS  Google Scholar 

  49. Parsian A, Akbari M. New experimental correlation for the thermal conductivity of ethylene glycol containing Al 2 O 3–Cu hybrid nanoparticles. J Therm Anal Calorim. 2018;131:1605–13.

    CAS  Google Scholar 

  50. Leong KY, Razali I, Ahmad KK, Ong HC, Ghazali M, Rahman MRA. Thermal conductivity of an ethylene glycol/water-based nanofluid with copper-titanium dioxide nanoparticles: an experimental approach. Int Commun Heat Mass Trans. 2018;90:23–8.

    CAS  Google Scholar 

  51. Rajendran D, Sundaram EG, Jawahar P. Experimental studies on the effect of enhanced thermal conductivity of SiC + water nanofluid in the performance of small scale solar parabolic dish receiver. Int J Nanosci. 2018;17:1760025.

    CAS  Google Scholar 

  52. Hamid K, Azmi W, Nabil M, Mamat R. Improved thermal conductivity of TiO2–SiO2 hybrid nanofluid in ethylene glycol and water mixture. In: IOP Conference series: materials science and engineering, 2017. p. 012067.

    Google Scholar 

  53. Agarwal R, Verma K, Agrawal NK, Singh R. Sensitivity of thermal conductivity for Al 2 O 3 nanofluids. Exp Therm Fluid Sci. 2017;80:19–26.

    CAS  Google Scholar 

  54. Maxwell JC. A treatise on electricity and magnetism. oxford: Clarendon press, 1881, vol. 1.

  55. Wasp EJ, Kenny JP, Gandhi RL. Solid–liquid flow: slurry pipeline transportation. [Pumps, valves, mechanical equipment, economics]. Ser Bulk Mater Handl; (United States). 1977; vol. 1.

  56. Bruggeman VD. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys. 1935;416:636–64.

    Google Scholar 

  57. Bhattacharya P, Saha S, Yadav A, Phelan P, Prasher R. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. J Appl Phys. 2004;95:6492–4.

    CAS  Google Scholar 

  58. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6:577–88.

    Google Scholar 

  59. Koo J, Kleinstreuer C. Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Trans. 2005;32:1111–8.

    CAS  Google Scholar 

  60. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    CAS  Google Scholar 

  61. Leong K, Yang C, Murshed S. A model for the thermal conductivity of nanofluids–the effect of interfacial layer. J Nanopart Res. 2006;8:245–54.

    CAS  Google Scholar 

  62. Jiang H, Xu Q, Huang C, Shi L. The role of interfacial nanolayer in the enhanced thermal conductivity of carbon nanotube-based nanofluids. Appl Phys A. 2015;118:197–205.

    CAS  Google Scholar 

  63. Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1:187–91.

    CAS  Google Scholar 

  64. Yang L, Du K, Zhang X. A theoretical investigation of thermal conductivity of nanofluids with particles in cylindrical shape by anisotropy analysis. Powder Technol. 2017;314:328–38.

    CAS  Google Scholar 

  65. Kumar DH, Patel HE, Kumar VR, Sundararajan T, Pradeep T, Das SK. Model for heat conduction in nanofluids. Phys Rev Lett. 2004;93:144301.

    PubMed  Google Scholar 

  66. Dardan E, Afrand M, Isfahani AM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    CAS  Google Scholar 

  67. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Experim Therm Fluid Sci. 2016;79:231–7.

    CAS  Google Scholar 

  68. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50:3071–7.

    CAS  Google Scholar 

  69. Jana S, Salehi-Khojin A, Zhong W-H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462:45–55.

    CAS  Google Scholar 

  70. Nadooshan AA, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Physica E Low Dimens Syst Nanostruct. 2017;92:47–54.

    Google Scholar 

  71. Esfe MH, Arani AAA, Badi RS, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO 2/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018;131:2381–93.

    Google Scholar 

  72. Akilu S, Baheta AT, Sharma K. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    CAS  Google Scholar 

  73. Esfe MH, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Physica E Low Dimens Syst Nanostruct. 2018;95:71–7.

    Google Scholar 

  74. Ahangarpour A, Farbod M. The noble effect of aging on the thermal conductivity of modified CNTs-ethylene glycol nanofluids. Phys Chem Liq. 2018;56:9–15.

    CAS  Google Scholar 

  75. Vinodha G, Cindrella L, Sithara V, Philip J, Shima P. Synthesis, characterization, thermal conductivity and rheological studies in magnetite-decorated graphene oxide nanofluids. J Nanofluids. 2018;7:11–20.

    Google Scholar 

  76. Stalhane B, Pyk S. Ny metod för bestämning av värmeledningskoefficienter. Teknisk Tidskrift. 1931;61(28):389–93.

    Google Scholar 

  77. Eucken A, Englert H. Die experimentelle Bestimmung des Wärmeleitvermögens einiger verfestigter Gase und Flüssigkeiten. Zeitschrift fur die gesamte Kalte-Industrie. 1938;45:109.

    CAS  Google Scholar 

  78. Horrocks J, McLaughlin E. Non-steady-state measurements of the thermal conductivities of liquid polyphenyls. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. 1963; pp. 259–274.

  79. Liu MS, Lin MC, Huang IT, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol. 2006;29:72–7.

    Google Scholar 

  80. Aparna Z, Michael M, Pabi S, Ghosh S. Diversity in thermal conductivity of aqueous Al 2 O 3–and Ag–nanofluids measured by transient hot-wire and laser flash methods. Exp Therm Fluid Sci. 2018;94:231–45.

    CAS  Google Scholar 

  81. Xie H, Gu H, Fujii M, Zhang X. Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials. Meas Sci Technol. 2005;17:208.

    Google Scholar 

  82. Omotani T, Nagasaka Y, Nagashima A. Measurement of the thermal conductivity of KNO 3-NaNO 3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe. Int J Thermophys. 1982;3:17–26.

    CAS  Google Scholar 

  83. Hammerschmidt U, Sabuga W. Transient hot wire (THW) method: uncertainty assessment. Int J Thermophys. 2000;21:1255–78.

    CAS  Google Scholar 

  84. Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys. 2006;27:569–80.

    Google Scholar 

  85. Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles 1993.

  86. Gustafsson SE. A non-steady-state method of measuring the thermal conductivity of transparent liquids. Zeitschrift für Naturforschung A. 1967;22:1005–11.

    CAS  Google Scholar 

  87. Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62:797–804.

    CAS  Google Scholar 

  88. Gustavsson M, Karawacki E, Gustafsson SE. Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors. Rev Sci Instrum. 1994;65:3856–9.

    CAS  Google Scholar 

  89. Zhu D, Li X, Wang N, Wang X, Gao J, Li H. Dispersion behavior and thermal conductivity characteristics of Al 2 O 3–H 2 O nanofluids. Current Appl Phys. 2009;9:131–9.

    Google Scholar 

  90. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. Int J Therm Sci. 2009;48:1108–15.

    CAS  Google Scholar 

  91. Roetzel W, Prinzen S, Xuan Y. Measurement of thermal diffusivity using temperature oscillations. Therm Conduct. 1990;21:201–7.

    CAS  Google Scholar 

  92. Czarnetzki W, Roetzel W. Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophy. 1995;16:413–22.

    CAS  Google Scholar 

  93. Cahill DG. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum. 1990;61:802–8.

    CAS  Google Scholar 

  94. Carslaw H, Jaeger JC. Conduction of heat in solids, vol. 302. New York: Oxford University Press; 1959. p. 340–1.

    Google Scholar 

  95. Yang B, Han Z. Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett. 2006;89:083111.

    Google Scholar 

  96. Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Trans. 1999;13:474–80.

    CAS  Google Scholar 

  97. Li CH, Peterson G. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.

    Google Scholar 

  98. Challoner A, Powell R. Thermal conductivities of liquids: new determinations for seven liquids and appraisal of existing values. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, 1956; pp. 90–106.

  99. Singh A. Thermal conductivity of nanofluids. Def Sci J. 2008;58:600.

    CAS  Google Scholar 

  100. Wakeham WA, Assael MJ. Thermal conductivity measurement. In: Webster JG, Eren H, editors. Measurement, instrumentation, and sensors handbook, 2nd edtion. Spatial, mechanical, thermal and radiation measurement. Boca Raton, FL: CRC Press, pp. 4-66-3-66. ed.

    Google Scholar 

  101. Wakeham WA, Assael MJ, Marmur A, De Coninck J, Blake TD, Theron SA, Zussman E. Material properties: measurement and data. In: Tropea C, Yarin A, Foss JF, editors. Handbook of experimental fluid mechanics. Berlin/Heidelberg, Germany: Springer; 2007. pp. 139–140.

    Google Scholar 

  102. Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Appl Energy. 2009;86:2244–8.

    CAS  Google Scholar 

  103. Ehle A, Feja S, Buschmann MH. Temperature dependency of ceramic nanofluids shows classical behavior. J Thermophys Heat Trans. 2011;25:378–85.

    CAS  Google Scholar 

  104. Buschmann MH. Thermal conductivity and heat transfer of ceramic nanofluids. Int J Therm Sci. 2012;62:19–28.

    CAS  Google Scholar 

  105. Glory J, Bonetti M, Helezen M, Mayne-L’Hermite M, Reynaud C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys. 2008;103:094309.

    Google Scholar 

  106. Powell R. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J Sci Instrum. 1957;34:485.

    Google Scholar 

  107. Chopkar M, Sudarshan S, Das P, Manna I. Effect of particle size on thermal conductivity of nanofluid. Metallurgical Mater Trans A. 2008;39:1535–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfe, M.H., Afrand, M. An updated review on the nanofluids characteristics. J Therm Anal Calorim 138, 4091–4101 (2019). https://doi.org/10.1007/s10973-019-08406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08406-2

Keywords

Navigation