Skip to main content

Design of heat exchanger with combined turbulator

Abstract

In this article, influence of inserting new turbulator on resistance and heat transfer behaviors of a pipe has been analyzed. This kind of turbulator can be utilized for retrofit applications. Turbulent nanofluid flow is imposed. Homogenous approach for nanofluid and kɛ approach for turbulent modeling were involved. Contours are presented for different inlet velocity and pitch ratio. Results indicated that the lower the pitch ratio, the better is the temperature gradient. Nanofluid transfers more heat with decline of pitch ratio because of lower generation of longitudinal disturbance. As inlet velocity augments and pitch ratio decreases, nanofluid can scour the wall more easily and heat transfer rate is strengthened.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

Pr :

Prandtl number

f :

Darcy friction factor

p :

Pressure

P :

Pitch ratio

Re :

Reynolds number

T :

Fluid temperature

Nu :

Nusselt number

L t :

Test section length

ρ :

Density

ϕ :

Concentration of nanoparticles

μ :

Dynamic viscosity of nanofluid

α :

Thermal diffusivity

s:

Solid

nf:

Working fluid

f:

Water

s:

Particles

p:

Smooth

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and applications of non-Newtonian flows FED, vol 231/MDvol. 66. New York: ASME; 1995. pp. 99–105.

  2. Sadiq MA, Khan AU, Saleem S, Nadeem S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv. 2019;9:4751–64.

    CAS  Article  Google Scholar 

  3. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    CAS  Article  Google Scholar 

  4. Mamatha Upadhya S, Raju CSK, Mahesha C, Saleem S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo–Christov heat flux. Results Phys. 2018;9:779–86.

    Article  Google Scholar 

  5. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Article  Google Scholar 

  6. Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018;9:1201–14.

    Article  Google Scholar 

  7. Sun Z, Shi J, Wu K, Li X. Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content. Ind Eng Chem Res. 2018;57:3430–40.

    CAS  Article  Google Scholar 

  8. Kashyap D, Dass AK. Two-phase lattice Boltzmann simulation of natural convection in a Cu–water nanofluid-filled porous cavity: effects of thermal boundary conditions on heat transfer and entropy generation. Adv Powder Technol. 2018;29(11):2707–24.

    CAS  Article  Google Scholar 

  9. Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci. 2013;44:716–21.

    CAS  Article  Google Scholar 

  10. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8.

    CAS  Article  Google Scholar 

  11. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Article  Google Scholar 

  12. Nadeem S, Ahmed Z, Saleem S. Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. Microsyst Technol. 2018. https://doi.org/10.1007/s00542-018-4232-4.

    Article  Google Scholar 

  13. Animasaun IL, Mahanthesh B, Jagun AO, Bankole TD, Sivaraj R, Shah NA, Saleem S. Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J Heat Transfer. 2019;141(2):022402. https://doi.org/10.1115/1.4041971.

    CAS  Article  Google Scholar 

  14. Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys A Stat Mech Appl. 2019;523:87–104.

    CAS  Article  Google Scholar 

  15. Alkanhal TA, Sheikholeslami M, Arabkoohsar A, Haq RU, Shafee A, Li Z, Tlili I. Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. Int J Heat Mass Transf. 2019;136:146–56.

    CAS  Article  Google Scholar 

  16. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.

    CAS  Article  Google Scholar 

  17. Roy NC, Rahman T, Hossain MA, Gorla RSR. Boundary-layer characteristics of compressible flow past a heated cylinder with viscous dissipation. J Thermophys Heat Transf. 2019;33(1):10–22. https://doi.org/10.2514/1.t5400.

    CAS  Article  Google Scholar 

  18. Hammed H, Haneef M, Shah Z, Islam S, Khan W, Muhammad S. The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. Appl Sci. 2018;8:160. https://doi.org/10.3390/app8020160.

    CAS  Article  Google Scholar 

  19. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    CAS  Article  Google Scholar 

  20. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    CAS  Article  Google Scholar 

  21. Maleki H, Safaei MR, Alrashed AAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7277-9.

    Article  Google Scholar 

  22. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    CAS  Article  Google Scholar 

  23. Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019;25:683–9.

    Article  Google Scholar 

  24. Sekrani G, Poncet S, Proulx P. Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem Eng Sci. 2018;176:205–19.

    CAS  Article  Google Scholar 

  25. Yan S, Wang F, Shi Z, Tian R. Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Appl Therm Eng. 2017;118:385–91.

    CAS  Article  Google Scholar 

  26. Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manag. 2015;95:160–9.

    CAS  Article  Google Scholar 

  27. Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7517-z.

    Article  Google Scholar 

  28. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  29. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019;1:1. https://doi.org/10.1007/s10973-018-7866-7.

    CAS  Article  Google Scholar 

  30. Sun F, Yao Y, Li X, Li G, Miao Y, Han S, Chen Z. Flow simulation of the mixture system of supercritical CO2 & superheated steam in toe-point injection horizontal wellbores. J Pet Sci Eng. 2018;163:199–210.

    CAS  Article  Google Scholar 

  31. Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M. Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel. 2019;236:1377–90.

    CAS  Article  Google Scholar 

  32. Sun F, Yao Y, Li X, Li G, Liu Q, Han S, Zhou Y. Effect of friction work on key parameters of steam at different state in toe-point injection horizontal wellbores. J Pet Sci Eng. 2018;164:655–62.

    CAS  Article  Google Scholar 

  33. Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  34. Rokni HB, Moore JD, Gupta A, McHugh MA, Gavaises M. Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel. 2019;241:1203–13.

    CAS  Article  Google Scholar 

  35. Gupta HK, Agrawal GD, Mathur J. Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Therm Eng. 2015;5:70–8.

    Article  Google Scholar 

  36. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52(73):83.

    Google Scholar 

  37. Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.

    CAS  Article  Google Scholar 

  38. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    CAS  Article  Google Scholar 

  39. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Article  Google Scholar 

  40. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kotturu V. V. Chandra Mouli would like to thank Deanship of Scientific Research at Majmaah University for supporting this work under the Project Number No. 1440-101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.K., Sheikholeslami, M., Jafaryar, M. et al. Design of heat exchanger with combined turbulator. J Therm Anal Calorim 139, 649–659 (2020). https://doi.org/10.1007/s10973-019-08401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08401-7

Keywords

  • Heat exchanger
  • New turbulator
  • Nanomaterial
  • Turbulent