Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and applications of non-Newtonian flows FED, vol 231/MDvol. 66. New York: ASME; 1995. pp. 99–105.
Sadiq MA, Khan AU, Saleem S, Nadeem S. Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv. 2019;9:4751–64.
CAS
Article
Google Scholar
Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.
CAS
Article
Google Scholar
Mamatha Upadhya S, Raju CSK, Mahesha C, Saleem S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo–Christov heat flux. Results Phys. 2018;9:779–86.
Article
Google Scholar
Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.
CAS
Article
Google Scholar
Shah Z, Islam S, Gul T, Bonyah E, Khan MA. The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018;9:1201–14.
Article
Google Scholar
Sun Z, Shi J, Wu K, Li X. Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content. Ind Eng Chem Res. 2018;57:3430–40.
CAS
Article
Google Scholar
Kashyap D, Dass AK. Two-phase lattice Boltzmann simulation of natural convection in a Cu–water nanofluid-filled porous cavity: effects of thermal boundary conditions on heat transfer and entropy generation. Adv Powder Technol. 2018;29(11):2707–24.
CAS
Article
Google Scholar
Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci. 2013;44:716–21.
CAS
Article
Google Scholar
Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8.
CAS
Article
Google Scholar
Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.
CAS
Article
Google Scholar
Nadeem S, Ahmed Z, Saleem S. Carbon nanotubes effects in magneto nanofluid flow over a curved stretching surface with variable viscosity. Microsyst Technol. 2018. https://doi.org/10.1007/s00542-018-4232-4.
Article
Google Scholar
Animasaun IL, Mahanthesh B, Jagun AO, Bankole TD, Sivaraj R, Shah NA, Saleem S. Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J Heat Transfer. 2019;141(2):022402. https://doi.org/10.1115/1.4041971.
CAS
Article
Google Scholar
Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys A Stat Mech Appl. 2019;523:87–104.
CAS
Article
Google Scholar
Alkanhal TA, Sheikholeslami M, Arabkoohsar A, Haq RU, Shafee A, Li Z, Tlili I. Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. Int J Heat Mass Transf. 2019;136:146–56.
CAS
Article
Google Scholar
Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z. Impact of Lorentz forces on Fe3O4–water ferrofluid entropy and exergy treatment within a permeable semi annulus. J Clean Prod. 2019;221:885–98.
CAS
Article
Google Scholar
Roy NC, Rahman T, Hossain MA, Gorla RSR. Boundary-layer characteristics of compressible flow past a heated cylinder with viscous dissipation. J Thermophys Heat Transf. 2019;33(1):10–22. https://doi.org/10.2514/1.t5400.
CAS
Article
Google Scholar
Hammed H, Haneef M, Shah Z, Islam S, Khan W, Muhammad S. The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. Appl Sci. 2018;8:160. https://doi.org/10.3390/app8020160.
CAS
Article
Google Scholar
Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.
CAS
Article
Google Scholar
Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.
CAS
Article
Google Scholar
Maleki H, Safaei MR, Alrashed AAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7277-9.
Article
Google Scholar
Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.
CAS
Article
Google Scholar
Saleem S, Nadeem S, Rashidi MM, Raju CSK. An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol. 2019;25:683–9.
Article
Google Scholar
Sekrani G, Poncet S, Proulx P. Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe. Chem Eng Sci. 2018;176:205–19.
CAS
Article
Google Scholar
Yan S, Wang F, Shi Z, Tian R. Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Appl Therm Eng. 2017;118:385–91.
CAS
Article
Google Scholar
Michael JJ, Iniyan S. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manag. 2015;95:160–9.
CAS
Article
Google Scholar
Li Z, Saleem S, Shafee A, Chamkha AJ, Du S. Analytical investigation of nanoparticle migration in a duct considering thermal radiation. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7517-z.
Article
Google Scholar
Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.
Google Scholar
Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019;1:1. https://doi.org/10.1007/s10973-018-7866-7.
CAS
Article
Google Scholar
Sun F, Yao Y, Li X, Li G, Miao Y, Han S, Chen Z. Flow simulation of the mixture system of supercritical CO2 & superheated steam in toe-point injection horizontal wellbores. J Pet Sci Eng. 2018;163:199–210.
CAS
Article
Google Scholar
Rokni HB, Gupta A, Moore JD, McHugh MA, Bamgbaded BA, Gavaises M. Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel. 2019;236:1377–90.
CAS
Article
Google Scholar
Sun F, Yao Y, Li X, Li G, Liu Q, Han S, Zhou Y. Effect of friction work on key parameters of steam at different state in toe-point injection horizontal wellbores. J Pet Sci Eng. 2018;164:655–62.
CAS
Article
Google Scholar
Sheikholeslami M. Numerical approach for MHD Al2O3–water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.
Article
Google Scholar
Rokni HB, Moore JD, Gupta A, McHugh MA, Gavaises M. Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel. 2019;241:1203–13.
CAS
Article
Google Scholar
Gupta HK, Agrawal GD, Mathur J. Investigations for effect of Al2O3–H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Therm Eng. 2015;5:70–8.
Article
Google Scholar
Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52(73):83.
Google Scholar
Sheikholeslami M, Mehryan SAM, Shafee A, Sheremet MA. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J Mol Liq. 2019;277:388–96.
CAS
Article
Google Scholar
Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.
CAS
Article
Google Scholar
Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.
CAS
Article
Google Scholar
Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.
Article
Google Scholar