Skip to main content
Log in

The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present paper, the first and second laws of thermodynamics are utilized to select the optimized position of porous insert to achieve maximum heat transfer and minimum pressure drop and entropy generation inside a double-pipe heat exchanger. Four different porous inserts configuration are considered in the heat exchanger, where the porous layers are placed at the core of the inner tube, wall of the inner tube, and inner or outer walls on outer tube for these cases. In addition, the effects of Darcy number and thermal conductivity of porous material on entropy generation, heat transfer enhancement and pressure drop penalty are investigated. The flow and heat transfer are modeled using Computational fluid dynamics. It was found that for outer tube of a double-pipe heat exchanger, placing the porous layer in the inner wall creates larger pressure drops. For inner tube, it is better to place the porous layer at the center, while for outer one, it is better to insert the porous layer at inner wall (interface wall) to achieve the higher values of heat transfer rate. Moreover, the thermal and viscous entropy generations are more pronounced for the cases, where the porous substrate is not located at the core of the heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C F :

Forchheimer coefficient (–)

Be :

Bejan number (–)

C p :

Specific heat at constant pressure (J kg−1 K−1)

D h :

Hydraulic diameter (m)

Da :

Darcy number (–)

E :

Heat exchanger effectiveness (–)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability of the porous medium (m2)

K r :

Thermal conductivity ratio (–)

L :

Length of the heat exchanger (m)

N g :

Dimensionless local volumetric entropy generation rate (–)

N t :

Dimensionless total entropy generation rate (–)

P :

Pressure (Pa)

p :

Pressure drop (Pa)

Pr :

Prandtl number (–)

Q :

Power (W)

r :

Radius (m)

R :

Radius ratio (–)

Re :

Reynolds number (–)

S :

Thickness of the porous substrate (m)

S gen :

Entropy generation rate (W m−3 K−1)

T:

Temperature (K)

U c, U h :

Inlet velocity of cold and hot fluids (m s−1)

U :

Overall heat transfer coefficient (W m−2 K−1)

u, v :

Velocity component in x and y directions, respectively (m s−1)

x, y :

Rectangular coordinates components (m)

α :

Thermal diffusivity of the fluid (m2 s−1)

ε :

Porosity (–)

μ :

Dynamic viscosity (kg ms−1)

ν :

Kinematic viscosity (m2 s−1)

ρ :

Density of the fluid (kg m−3)

θ :

Non-dimensional temperature (–)

eff:

Effective

c:

Cold

f:

Fluid

h:

Hot

I:

Inner

O:

Outer

R:

Ratio

S:

Solid

0:

Heat exchanger with no insert

References

  1. Hosseinnejad R, Hosseini M, Farhadi M. Turbulent heat transfer in tubular heat exchangers with twisted tape. J Therm Anal Calorim. 2018;135:1863–9.

    Article  Google Scholar 

  2. Khajeh Arzani H, Amiri A, Khajeh Arzani H, Bin Rozali S, Kazi SN, Badarudin A. Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycol-based nanofluids containing graphene nanoplatelets. J Therm Anal Calorim. 2016;126:1427–36.

    Article  CAS  Google Scholar 

  3. Chumpia A, Hooman K. Performance of tubular aluminum foam heat exchangers in multiple row bundles. J Therm Anal Calorim. 2018;135:1813–22.

    Article  Google Scholar 

  4. Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers. Appl Therm Eng. 2017;110:1075–90.

    Article  Google Scholar 

  5. Maddah H, Alizadeh M, Ghasemi N, Wan Alwi SR. Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int J Heat Mass Transf. 2014;78:1042–54.

    Article  CAS  Google Scholar 

  6. Iqbal Z, Syed KS, Ishaq M. Fin design for conjugate heat transfer optimization in double pipe. Int J Therm Sci. 2015;94:242–58.

    Article  Google Scholar 

  7. Sheikholeslami M, Ganji DD. Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energ Convers Manage. 2016;127:112–23.

    Article  Google Scholar 

  8. El Maakoul A, Laknizi A, Saadeddine S, Abdellah AB, Meziane M, El Metoui M. Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger. Energ Convers Manage. 2017;133:76–86.

    Article  Google Scholar 

  9. Ellahi R, Reza M, Akbar NS. Study of peristaltic flow of nanofluid with entropy generation in a porous medium. J Porous Media. 2017;20:461–78.

    Article  Google Scholar 

  10. Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int J Heat Mass Transf. 2014;68:161–73.

    Article  Google Scholar 

  11. Torabi M, Karimi N, Zhang K, Peterson GP. Generation of entropy and forced convection of heat in a conduit partially filled with porous media—local thermal non-equilibrium and exothermicity effects. Appl Therm Eng. 2016;106:518–36.

    Article  Google Scholar 

  12. Dickson C, Torabi M, Karimi N. First and second law analyses of nanofluid forced convection in a partially-filled porous channel—the effects of local thermal non-equilibrium and internal heat sources. Appl Therm Eng. 2016;103:459–80.

    Article  CAS  Google Scholar 

  13. Torabi N, Dickson C, Karimi N. Theoretical investigation of entropy generation and heat transfer by forced convection of copper–water nanofluid in a porous channel—local thermal non-equilibrium and partial filling effects. Powder Technol. 2016;301:234–54.

    Article  CAS  Google Scholar 

  14. Du YP, Qu ZG, Zhao CY, Tao WQ. Numerical study of conjugated heat transfer in metal foam filled double-pipe. Int J Heat Mass Transf. 2010;53:4899–907.

    Article  CAS  Google Scholar 

  15. Xu HJ, Qu ZG, Tao WQ. Numerical investigation on self-coupling heat transfer in a counter-flow double-pipe heat exchanger filled with metallic foams. Appl Therm Eng. 2014;66:43–54.

    Article  Google Scholar 

  16. Targui N, Kahalerras H. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures. Energ Convers Manage. 2008;49:3217–29.

    Article  Google Scholar 

  17. Targui N, Kahalerras H. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow. Energ Convers Manage. 2013;76:43–54.

    Article  Google Scholar 

  18. Alkam MK, Al-Nimr MA. Improving the performance of double-pipe heat exchangers by using porous substrates. Int J Heat Mass Transf. 1999;42:3609–18.

    Article  Google Scholar 

  19. Mamourian M, Milani Shirvan K, Ellahi R, Rahimi AB. Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach. Int J Heat Mass Transf. 2016;120:544–54.

    Article  Google Scholar 

  20. Akbar NS, Reza M, Ellahi R. Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O + Cu nanofluid. J Appl Fluid Mech. 2016;9:1721–30.

    Article  Google Scholar 

  21. Zeeshan A, Hassan M, Ellahi R, Nawaz M. Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation. Proc Inst Mech Eng E. 2017;231:871–9.

    Article  Google Scholar 

  22. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12:476482.

    Article  Google Scholar 

  23. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.

    Article  CAS  Google Scholar 

  24. Ellahi R, Hassan M, Zeeshan A, Khan AA. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci. 2016;6:641–51.

    Article  CAS  Google Scholar 

  25. Siavashi M, Talesh Bahrami HR, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  26. Kurtbas I, Celik N, Dinçer I. Exergy transfer in a porous rectangular channel. Energy. 2010;35:451–60.

    Article  Google Scholar 

  27. Torabi M, Karimi N, Zhang K. Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy. 2015;93:106–27.

    Article  Google Scholar 

  28. Komurgoz G, Arikoglu A, Ozkol I. Analysis of the magnetic effect on entropy generation in an inclined channel partially filled with a porous medium. Num Heat Transf Part A. 2012;61:786–99.

    Article  CAS  Google Scholar 

  29. Karimi N, Agbo D, Talat Khan A, Younger PL. On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel. Int J Therm Sci. 2015;96:128–48.

    Article  Google Scholar 

  30. Allouache N, Chikh S. Second law analysis in a partly porous double pipe heat exchanger. J of Appl Mech. 2006;73:60–5.

    Article  Google Scholar 

  31. Minkowycz WJ, Haji-Sheikh A, Vafai K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the Sparrow number. Int J Heat Mass Transf. 1999;42:3373–85.

    Article  CAS  Google Scholar 

  32. Akbarzadeh M, Maghrebi MJ. Combined effects of corrugated walls and porous inserts on performance improvement in a heat exchanger channel. Int J Therm Sci. 2018;127:266–76.

    Article  Google Scholar 

  33. Gorman JM, Krautbauer KR, Sparrow EM. Thermal and fluid flow first-principles numerical design of an enhanced double pipe heat exchanger. Appl Therm Eng. 2016;107:194–206.

    Article  CAS  Google Scholar 

  34. Kahalerras H, Targui N. Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins. Int J Numer Method Heat Fluid Flow. 2008;18:593–617.

    Article  Google Scholar 

  35. Ingham DB, Pop I. Transport phenomena in porous media III, vol. 3. Amsterdam: Elsevier; 2005.

    Google Scholar 

  36. Ucar E, Mobedi M, Pop I. Effect of inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer. Transp Porous Med. 2013;98:35–57.

    Article  CAS  Google Scholar 

  37. Dukhan N, Bagci O, Ozdemir M. Thermal development in open-cell metal foam: an experiment with constant wall heat flux. Int J Heat Mass Transf. 2015;85:825–59.

    Article  Google Scholar 

  38. Bejan A. Entropy generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Keshmiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, M., Rashidi, S., Keshmiri, A. et al. The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis. J Therm Anal Calorim 139, 411–426 (2020). https://doi.org/10.1007/s10973-019-08362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08362-x

Keywords

Navigation