Skip to main content
Log in

A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, a novel technique has been developed to enhance the thermal performance of a thermoelectric cooler (TEC) by integrating with phase-change material (PCM). The PCM has been integrated at the hot side of the thermoelectric cooler to maintain constant and relatively low temperature. The study has been carried out with variable geometric parameters of the heat sink, variable cooling load conditions, variable input currents to the TEC and with different PCMs. The results show that there is a significant reduction in both hot and cold side temperatures of the thermoelectric cooler with the use of PCM. For a typical operating condition in the TEC with two thermocouples (2 mm × 2 mm × 3 mm each) under cooling load of 0.03 W and convective heat transfer coefficient of 5 Wm−2 K−1, the hot and cold side temperatures of the TEC have been reduced from 52 to 30 °C and 25 to 12 °C, respectively, with the use of PCM. The coefficient of performance of the TEC integrated with PCM has been estimated and it has been found to be 30% higher than the TEC without PCM for a cooling load of 0.05 W. Moreover, the thermal performance of TEC has been studied with variable fill volume of PCM in the heat sink. It has been found that the increase in fill volume of PCM increases the thermal performance of the TEC. This study has been carried out with different PCMs and similar performance enhancements have been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

h:

Heat transfer coefficient/Wm−2K−1

A:

Area/m2

H:

Height/mm

I:

Current/A

L:

Latent heat of fusion/kJ kg−1

N:

Number

Q:

Heat/W

T:

Temperature/oC

W:

Width/mm

Z:

Figure of merit/K−1

a:

Environment

c:

Cold side of TEC

fin:

Fins

h:

Hot side of TEC

m:

Mean

n:

n-type material

p:

p-type material

Δ:

Difference

References

  1. Zhao D, Tan G. Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling. Energy. 2014;15(68):658–66.

    Article  Google Scholar 

  2. Yang R, Chen G, Kumar AR, Snyder GJ, Fleurial JP. Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Convers Manag. 2005;46(9–10):1407–21.

    Article  Google Scholar 

  3. Riffat SB, Qiu G. Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. Appl Therm Eng. 2004;24(14–15):1979–93.

    Article  Google Scholar 

  4. Hermes CJ, Barbosa JR Jr. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers. Appl Energy. 2012;91(1):51–8.

    Article  Google Scholar 

  5. Faraji AY, Goldsmid HJ, Akbarzadeh A. Experimental study of a thermoelectrically-driven liquid chiller in terms of COP and cooling down period. Energy Convers Manag. 2014;1(77):340–8.

    Article  Google Scholar 

  6. Ma M, Yu J, Chen J. An investigation on thermoelectric coolers operated with continuous current pulses. Energy Convers Manag. 2015;1(98):275–81.

    Article  Google Scholar 

  7. Attar A, Lee H. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system. Energy Convers Manag. 2016;15(112):328–36.

    Article  Google Scholar 

  8. Cai Y, Liu D, Zhao FY, Tang JF. Performance analysis and assessment of thermoelectric micro cooler for electronic devices. Energy Convers Manag. 2016;15(124):203–11.

    Article  Google Scholar 

  9. Al-Madhhachi H, Min G. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system. Energy Convers Manag. 2017;1(133):14–9.

    Article  Google Scholar 

  10. Najafi H, Woodbury KA. Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol Energy. 2013;1(91):152–60.

    Article  Google Scholar 

  11. Riffat SB, Ma X. Improving the coefficient of performance of thermoelectric cooling systems: a review. Int J Energy Res. 2004;28(9):753–68.

    Article  Google Scholar 

  12. Min G, Rowe DM. Experimental evaluation of prototype thermoelectric domestic-refrigerators. Appl Energy. 2006;83(2):133–52.

    Article  CAS  Google Scholar 

  13. Wang CC, Hung CI, Chen WH. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy. 2012;39(1):236–45.

    Article  CAS  Google Scholar 

  14. Naphon P, Wiriyasart S. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU. Int Commun Heat Mass Transfer. 2009;36(2):166–71.

    Article  CAS  Google Scholar 

  15. Zhang HY, Mui YC, Tarin M. Analysis of thermoelectric cooler performance for high power electronic packages. Appl Therm Eng. 2010;30(6–7):561–8.

    Article  Google Scholar 

  16. Vián JG, Astrain D. Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift. Appl Therm Eng. 2009;29(10):1935–40.

    Article  Google Scholar 

  17. Vian JG, Astrain D. Development of a heat exchanger for the cold side of a thermoelectric module. Appl Therm Eng. 2008;28(11–12):1514–21.

    Article  CAS  Google Scholar 

  18. Luo J, Chen L, Sun F, Wu C. Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator. Energy Convers Manag. 2003;44(20):3197–206.

    Article  Google Scholar 

  19. Manikandan S, Kaushik SC. Energy and exergy analysis of an annular thermoelectric cooler. Energy Convers Manag. 2015;1(106):804–14.

    Article  Google Scholar 

  20. Manikandan S, Kaushik SC. Transient thermal behavior of annular thermoelectric cooling system. J Electron Mater. 2017;46(5):2560–9.

    Article  CAS  Google Scholar 

  21. Min G, Rowe DM. Improved model for calculating the coefficient of performance of a Peltier module. Energy Convers Manag. 2000;41(2):163–71.

    Article  Google Scholar 

  22. Tan G, Zhao D. Study of a thermoelectric space cooling system integrated with phase change material. Appl Therm Eng. 2015;86:187–98.

    Article  Google Scholar 

  23. Hodes M, Weinstein RD, Pence SJ, Piccini JM, Manzione L, Chen C. Transient thermal management of a handset using phase change material (PCM). J Electron Packag. 2002;124(4):419–26.

    Article  CAS  Google Scholar 

  24. Saha SK, Srinivasan K, Dutta P. Studies on optimum distribution of fins in heat sinks filled with phase change materials. J Heat Transfer. 2008;130(3):034505.

    Article  Google Scholar 

  25. Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy. 2019;140:513–38.

    Article  CAS  Google Scholar 

  26. Qiu L, Guo P, Kong Q, Tan CW, Liang K, Wei J, Tey JN, Feng Y, Zhang X, Tay BK. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon. 2019;1(145):725–33.

    Article  Google Scholar 

  27. Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, Zhang X, Li Q. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon. 2019;1(141):497–505.

    Article  Google Scholar 

  28. Qiu L, Scheider K, Radwan SA, Larkin LS, Saltonstall CB, Feng Y, Zhang X, Norris PM. Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon. 2017;1(120):128–36.

    Article  Google Scholar 

  29. Li X, Mahmoud S, Al-Dadah RK, Elsayed A. Thermoelectric cooling device integrated with PCM heat storage for MS patients. Energy Procedia. 2014;1(61):2399–402.

    Article  Google Scholar 

  30. Wang X, Xu J, Zhang F, Du S. Phase change materials at the cold/hot sides of thermoelectric cooler for temperature control. In International conference on smart materials and nanotechnology in engineering (vol. 6423, p. 642318). International Society for Optics and Photonics. 2007.

  31. Caroff T, Mitova R, Wunderle B, Simon J. Transient cooling of power electronic devices using thermoelectric coolers coupled with phase change materials. In 19th International workshop on thermal investigations of ICs and systems (THERMINIC) (pp. 262–7). IEEE. 2013.

  32. COMSOL Multiphysics. Heat transfer module. User’s Guide, Version 4.4. 2013.

  33. Weblink: https://www.comsol.co.in/blogs/phase-change-cooling-solidification-metal/ Accessed 20 April 2018.

  34. Manikandan S, Selvam C, Poddar N, Pranjyal K, Lamba R, Kaushik SC. Thermal management of low concentrated photovoltaic module with phase change material. J Clean Prod. 2019;10(219):359–67.

    Article  Google Scholar 

  35. Kaushik SC, Manikandan S, Hans R. Thermodynamic modeling of thermoelectric generator systems. Heat Pipe Sci Technol. 2015;6(3–4):241–66.

    Article  Google Scholar 

  36. Jaegle M. Multiphysics simulation of thermoelectric systems-modeling of Peltier-cooling and thermoelectric generation. In COMSOL Conference 2008 Hannover 2008 (No. 6).

  37. Weblink: http://www.pluss.co.in/upload/technicaldatasheets/Doc%20394%20TDS_OM32.pdf. Accessed 20 April 2018.

Download references

Acknowledgements

Authors acknowledge the use of COMSOL Multiphysics computational facility from the Centre for Energy Studies, Indian Institute of Technology Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, S., Selvam, C., Pavan Sai Praful, P. et al. A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim 140, 1003–1014 (2020). https://doi.org/10.1007/s10973-019-08353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08353-y

Keywords

Navigation