Skip to main content
Log in

Significance of homogeneous–heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three-dimensional rotating flow of water-based carbon nanotubes is investigated in the presence of Darcy–Forchheimer porous space and homogeneous–heterogeneous reactions. Variable surface temperature condition is employed. Exponentially stretchable sheet induces the flow. Xue model has been implemented for nanoliquid transport mechanism. Suitable transformations lead to strong nonlinear ordinary differential system. An optimal homotopic algorithm is used to tackle the governing nonlinear system. Results for single-wall carbon nanotubes and multi-wall carbon nanotubes have been studied. Plots are displayed just to explore the role of flow parameters on solutions. Skin friction coefficients and heat transfer rate have been plotted and discussed. Our findings indicate that the skin friction coefficients and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

u, v, w :

Velocity components

μ f :

Fluid dynamic viscosity

ν f :

Kinematic fluid viscosity

k f :

Basefluid thermal conductivity

α f :

Thermal diffusivity of base fluid

T w :

Surface temperature

\(u_{\text{w}} (x)\) :

Surface stretching velocity

u 0 :

Reference velocity

F :

Non-uniform inertia coefficient

C b :

Drag coefficient

λ :

Local porosity parameter

Sc :

Schmidt number

ϕ :

Nanoparticles volume fraction

θ :

Dimensionless temperature

Pr :

Prandtl number

k c, k s :

Rate constants

k 1 :

Homogeneous reaction parameter

Re x :

Local Reynolds number

C fx, C fy :

Skin friction coefficients

x, y, z :

Space coordinates

ρ f :

Fluid density

ν nf :

Kinematic nanofluid viscosity

k nf :

Nanofluid thermal conductivity

α nf :

Thermal diffusivity of nanofluid

T :

Ambient fluid temperature

k CNT :

CNTs thermal conductivity

k*:

Permeability of porous medium

D A, D B :

Diffusion coefficients

Ω :

Local rotation parameter

Fr :

Forchheimer number

ζ :

Dimensionless variable

f′, g :

Dimensionless velocities

r :

Dimensionless concentration

α :

Ratio number

A, B :

Chemical species

k 2 :

Heterogeneous reaction parameter

\(H_{\text{j}}^{**}\) :

Arbitrary constants

Nu x :

Local Nusselt number

References

  1. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252.

    CAS  Google Scholar 

  2. Ramasubramaniam R, Chen J, Liu H. Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett. 2003;83:2928.

    CAS  Google Scholar 

  3. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Physica B. 2005;368:302–7.

    CAS  Google Scholar 

  4. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    CAS  Google Scholar 

  5. Kamali R, Binesh A. Numerical investigation of heat transfer enhancement using carbon nanotube-based non-Newtonian nanofluids. Int Commun Heat Mass Transf. 2010;37:1153–7.

    CAS  Google Scholar 

  6. Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci. 2013;44:716–21.

    CAS  Google Scholar 

  7. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A. 2014;66:1321–40.

    CAS  Google Scholar 

  8. Hayat T, Farooq M, Alsaedi A. Homogeneous-heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating. AIP Adv. 2015;5:027130.

    Google Scholar 

  9. Ellahi R, Hassan M, Zeeshan A. Study of natural convection MHD nanofluid by means of single and multi walled carbon nanotubes suspended in a salt water solutions. IEEE Trans Nanotechnol. 2015;14:726–34.

    CAS  Google Scholar 

  10. Hayat T, Muhammad K, Farooq M, Alsaedi A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 2016;6:015214.

    Google Scholar 

  11. Magyari E. Comment on the homogeneous nanofluid models applied to convective heat transfer problems. Acta Mech. 2011;222:381–5.

    Google Scholar 

  12. Karimipour A, Taghipour A, Malvandi A. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J Magn Magn Mater. 2016;419:420–8.

    CAS  Google Scholar 

  13. Hayat T, Hussain Z, Muhammad T, Alsaedi A. Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. J Mol Liq. 2016;221:1121–7.

    CAS  Google Scholar 

  14. Kandasamy R, Muhaimin I, Mohammad R. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions. Alex Eng J. 2016;55:275–85.

    Google Scholar 

  15. Khan U, Ahmed N, Mohyud-Din ST. Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes. Appl Therm Eng. 2017;113:1107–17.

    CAS  Google Scholar 

  16. Haq RU, Shahzad F, Al-Mdallal QM. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 2017;7:57–68.

    Google Scholar 

  17. Hayat T, Haider F, Muhammad T, Alsaedi A. On Darcy–Forchheimer flow of carbon nanotubes due to a rotating disk. Int J Heat Mass Transf. 2017;112:248–54.

    CAS  Google Scholar 

  18. Hayat T, Hussain Z, Ahmed B, Alsaedi A. Base fluids with CNTs as nanoparticles through non-Darcy porous medium in convectively heated flow: a comparative study. Adv Powder Technol. 2017;28:1855–65.

    CAS  Google Scholar 

  19. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Flow of carbon nanotubes submerged in water through a channel with wavy walls with convective boundary conditions. Colliod Polym Sci. 2017;295:1905–14.

    CAS  Google Scholar 

  20. Hayat T, Rafique K, Muhammad T, Alsaedi A, Ayub M. Carbon nanotubes significance in Darcy–Forchheimer flow. Results Phys. 2018;8:26–33.

    Google Scholar 

  21. Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A. MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci. 2018;135:532–40.

    Google Scholar 

  22. Hayat T, Haider F, Muhammad T, Alsaedi A. Darcy–Forchheimer squeezed flow of carbon nanotubes with thermal radiation. J Phys Chem Solids. 2018;120:79–86.

    CAS  Google Scholar 

  23. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    CAS  Google Scholar 

  24. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200.

    CAS  Google Scholar 

  25. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7901-8.

    Article  Google Scholar 

  26. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    CAS  Google Scholar 

  27. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135:305–23.

    CAS  Google Scholar 

  28. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  29. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Google Scholar 

  30. Atashafrooz M, Sheikholeslami M, Sajjadi H, Delouei AA. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. J Magn Magn Mater. 2019;478:216–26.

    CAS  Google Scholar 

  31. Turkyilmazoglu M. Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions. Phys Fluids. 2016;28:043102.

    Google Scholar 

  32. Turkyilmazoglu M. Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface. Commun Nonlinear Sci Numer Simul. 2018;63:373–9.

    Google Scholar 

  33. Turkyilmazoglu M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. Int J Heat Mass Transf. 2018;126:974–9.

    CAS  Google Scholar 

  34. Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018;30:063605.

    Google Scholar 

  35. Turkyilmazoglu M. Convergence accelerating in the homotopy analysis method: a new approach. Adv Appl Math Mech. 2018;10:925–47.

    Google Scholar 

  36. Darcy H. Les Fontaines Publiques De La Ville De Dijon. Paris: Victor Dalmont; 1856.

    Google Scholar 

  37. Forchheimer P. Wasserbewegung durch boden. Zeitschrift Ver D Ing. 1901;45:1782–8.

    Google Scholar 

  38. Muskat M. The flow of homogeneous fluids through porous media. Ann Arbor: Edwards; 1946.

    Google Scholar 

  39. Seddeek MA. Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci. 2006;293:137–42.

    CAS  PubMed  Google Scholar 

  40. Pal D, Mondal H. Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity. Int Commun Heat Mass Transf. 2012;39:913–7.

    Google Scholar 

  41. Sadiq MA, Hayat T. Darcy–Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results Phys. 2016;6:884–90.

    Google Scholar 

  42. Rashidi S, Masoodi R, Bovand M, Valipour MS. Numerical study of flow around and through a porous diamond cylinder in different apex angles. Int J Numer Methods Heat Fluid Flow. 2014;24:1504–18.

    Google Scholar 

  43. Bakar SA, Arifin NM, Nazar R, Ali FM, Pop I. Forced convection boundary layer stagnation-point flow in Darcy–Forchheimer porous medium past a shrinking sheet. Front Heat Mass Transf. 2016;7:38.

    Google Scholar 

  44. Hayat T, Muhammad T, Al-Mezal S, Liao SJ. Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. Int J Numer Methods Heat Fluid Flow. 2016;26:2355–69.

    Google Scholar 

  45. Hayat T, Haider F, Muhammad T, Alsaedi A. On Darcy–Forchheimer flow of viscoelastic nanofluids: a comparative study. J Mol Liq. 2017;233:278–87.

    CAS  Google Scholar 

  46. Umavathi JC, Ojjela O, Vajravelu K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer-Brinkman model. Int J Therm Sci. 2017;111:511–24.

    CAS  Google Scholar 

  47. Muhammad T, Alsaedi A, Shehzad SA, Hayat T. A revised model for Darcy–Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin J Phys. 2017;55:963–76.

    CAS  Google Scholar 

  48. Sheikholeslami M. Influence of Lorentz forces on nanofluid flow in a porous cavity by means of non- Darcy model. Eng Comput. 2017;34:2651–67.

    Google Scholar 

  49. Muhammad T, Alsaedi A, Hayat T, Shehzad SA. A revised model for Darcy–Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 2017;7:2791–7.

    Google Scholar 

  50. Hayat T, Aziz A, Muhammad T, Alsaedi A. Darcy–Forchheimer three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface. Commun Theor Phys. 2017;68:387–94.

    CAS  Google Scholar 

  51. Wang CY. Stretching a surface in a rotating fluid. Z Angew Math Phys. 1988;39:177–85.

    Google Scholar 

  52. Takhar HS, Chamkha AJ, Nath G. Flow and heat transfer on a stretching surface in a rotating fluid with a magnetic field. Int J Therm Sci. 2003;42:23–31.

    Google Scholar 

  53. Nazar R, Amin N, Pop I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mech Res Commun. 2004;31:121–8.

    Google Scholar 

  54. Javed T, Sajid M, Abbas Z, Ali N. Non-similar solution for rotating flow over an exponentially stretching surface. Int J Numer Methods Heat Fluid Flow. 2011;21:903–8.

    CAS  Google Scholar 

  55. Zaimi K, Ishak A, Pop I. Stretching surface in rotating viscoelastic fluid. Appl Math Mech Engl Ed. 2013;34:945–52.

    Google Scholar 

  56. Rosali H, Ishak A, Nazar R, Pop I. Rotating flow over an exponentially shrinking sheet with suction. J Mol Liq. 2015;211:965–9.

    CAS  Google Scholar 

  57. Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 2016;6:627–33.

    Google Scholar 

  58. Mustafa M, Hayat T, Alsaedi A. Rotating flow of Maxwell fluid with variable thermal conductivity: an application to non-Fourier heat flux theory. Int J Heat Mass Transf. 2017;106:142–8.

    CAS  Google Scholar 

  59. Hayat T, Muhammad T, Mustafa M, Alsaedi A. An optimal study for three dimensional flow of Maxwell nanofluid subject to rotating frame. J Mol Liq. 2017;229:541–7.

    CAS  Google Scholar 

  60. Hayat T, Haider F, Muhammad T, Alsaedi A. Three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer porous medium. PLoS ONE. 2017;12:e0179576.

    PubMed  PubMed Central  Google Scholar 

  61. Maqsood N, Mustafa M, Khan JA. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions. Results Phys. 2017;7:3475–81.

    Google Scholar 

  62. Mustafa M, Hayat T, Alsaedi A. Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo-Christov heat flux: analytic solutions. Int J Numer Meth Heat Fluid Flow. 2017;27:2207–22.

    Google Scholar 

  63. Merkin JH. A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow. Math Comput Model. 1996;24:125–36.

    Google Scholar 

  64. Chaudhary MA, Merkin JH. A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. II. Different diffusivities for reactant and autocatalyst. Fluid Dyn Res. 1995;16:335–59.

    Google Scholar 

  65. Bachok N, Ishak A, Pop I. On the stagnation-point flow towards a stretching sheet with homogeneous-heterogeneous reactions effects. Commun Nonlinear Sci Numer Simul. 2011;16:4296–302.

    Google Scholar 

  66. Kameswaran PK, Shaw S, Sibanda P, Murthy PVSN. Homogeneous-heterogeneous reactions in a nanofluid flow due to porous stretching sheet. Int J Heat Mass Transf. 2013;57:465–72.

    CAS  Google Scholar 

  67. Imtiaz M, Hayat T, Alsaedi A, Hobiny A. Homogeneous-heterogeneous reactions in MHD flow due to an unsteady curved stretching surface. J Mol Liq. 2016;221:245–53.

    CAS  Google Scholar 

  68. Sajid M, Iqbal SA, Naveed M, Abbas Z. Effect of homogeneous-heterogeneous reactions and magnetohydrodynamics on Fe3O4 nanofluid for the Blasius flow with thermal radiations. J Mol Liq. 2017;233:115–21.

    CAS  Google Scholar 

  69. Hayat T, Ayub T, Muhammad T, Alsaedi A. Three-dimensional flow with Cattaneo-Christov double diffusion and homogeneous-heterogeneous reactions. Results Phys. 2017;7:2812–20.

    Google Scholar 

  70. Hayat T, Haider F, Muhammad T, Alsaedi A. Darcy–Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. PLoS ONE. 2017;12:e0174938.

    PubMed  PubMed Central  Google Scholar 

  71. Hayat T, Sajjad R, Ellahi R, Alsaedi A, Muhammad T. Homogeneous-heterogeneous reactions in MHD flow of micropolar fluid by a curved stretching surface. J Mol Liq. 2017;240:209–20.

    CAS  Google Scholar 

  72. Hayat T, Shah F, Alsaedi A, Hussain Z. Outcome of homogeneous and heterogeneous reactions in Darcy–Forchheimer flow with nonlinear thermal radiation and convective condition. Results Phys. 2017;7:2497–505.

    Google Scholar 

  73. Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul. 2010;15:2003–16.

    Google Scholar 

  74. Dehghan M, Manafian J, Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Eq. 2010;26:448–79.

    Google Scholar 

  75. Malvandi A, Hedayati F, Domairry G. Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. J Thermodyn. 2013;2013:764827.

    Google Scholar 

  76. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J Magn Magn Mater. 2015;385:222–9.

    CAS  Google Scholar 

  77. Turkyilmazoglu M. An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat. 2016;30:1633–50.

    Google Scholar 

  78. Zeeshan A, Majeed A, Ellahi R. Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq. 2016;215:549–54.

    CAS  Google Scholar 

  79. Hayat T, Aziz A, Muhammad T, Alsaedi A. On model for flow of Burgers nanofluid with Cattaneo-Christov double diffusion. Chin J Phys. 2017;55:916–29.

    CAS  Google Scholar 

  80. Hayat T, Aziz A, Muhammad T, Alsaedi A. Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface. Results Phys. 2017;7:4071–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsalan Aziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Aziz, A., Muhammad, T. et al. Significance of homogeneous–heterogeneous reactions in Darcy–Forchheimer three-dimensional rotating flow of carbon nanotubes. J Therm Anal Calorim 139, 183–195 (2020). https://doi.org/10.1007/s10973-019-08316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08316-3

Keywords

Navigation