Skip to main content
Log in

Low-temperature heat capacity and standard thermodynamic functions of 1-hexyl-3-methyl imidazolium perrhenate ionic liquid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat capacity for 1-hexyl-3-methyl imidazolium perrhenate ionic liquid [C6MIM][ReO4] in the temperature range from 79 to 396 K has been measured by a fully automated adiabatic calorimeter. For [C6MIM][ReO4], glass transition temperature, the melting temperature, standard molar heat capacity, enthalpy and entropy of solid–liquid phase transition were determined to be (202.164 ± 0.405) K, (226.198 ± 0.265) K, (480.702 ± 0.013) J K−1 mol−1, (15.665 ± 0.195) kJ mol−1 and (69.250 ± 0.780) J K−1 mol−1, respectively. In addition, the thermodynamic characteristics and solid–liquid phase change behavior of [C6MIM][ReO4] were compared with the ones of [C7MIM][ReO4] reported in the literature. The thermodynamic functions (HT H298.15), (ST S298.15) and (GT G298.15), for the compound in the experimental temperature range were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fang DW, Zuo JT, Xia MC, Tong J, Li J. Low-temperature heat capacities and the thermodynamic functions of ionic liquids 1-heptyl-3-methyl imidazolium perrhenate. J Therm Anal Calorim. 2018;132:2003–8.

    Article  CAS  Google Scholar 

  2. Yamamuro O, Minamimoto Y, Inamura Y, Hayashi S, Hamaguchi H. Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Phys Lett. 2006;423:371–5.

    Article  CAS  Google Scholar 

  3. Strechan AA, Paulechka YU, Blokhin AV, Kabo GJ. Low-temperature heat capacity of hydrophilic ionic liquids [BMIM][CF3COO] and [BMIM][CH3COO] and a correlation scheme for estimation of heat capacity of ionic liquids. J Chem Thermodyn. 2008;40:632–9.

    Article  CAS  Google Scholar 

  4. Shimizu Y, Ohte Y, Yamamura Y, Saito K, Atake T. Low-temperature heat capacity of room-temperature ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Phys Chem B. 2006;110:13970–5.

    Article  CAS  Google Scholar 

  5. Yauheni UP, Andrey GK, Andrey VB. Calorimetric determination of the enthalpy of 1-butyl-3-methylimidazolium bromide synthesis: a key quantity in thermodynamics of ionic liquids. J Phys Chem B. 2009;113:14742–6.

    Article  Google Scholar 

  6. Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.

    Article  CAS  Google Scholar 

  7. Fang DW, Tong J, Guan W, Wang H, Yang JZ. Prediction of the thermodynamic properties of 1-alkyl-3-methylimidazolium lactate ionic liquids [Cnmim][Lact] (n = 2, 3, 4, 5, and 6) by parachor. Sci China Chem. 2010;53:2564–70.

    Article  CAS  Google Scholar 

  8. Paulechka YU, Kohut SV, Blokhin AV, Kabo GJ. Thermodynamic properties of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid in the condensed state. Thermochim Acta. 2010;511:119–23.

    Article  CAS  Google Scholar 

  9. Wasserscheid P, Boemanna A, Bolm C. Synthesis and performance of ionic liquids determined from the “chiral pool”. Chem Commun. 2002;3:200–1.

    Article  Google Scholar 

  10. Baudequin C, Bregeon D, Levillain J. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–45.

    Article  CAS  Google Scholar 

  11. Ma CC, Shi Q, Woodfield BF, Navrotsky A. Low temperature heat capacity of bulk and nanophase ZnO and Zn1−xCoxO wurtzite phases. J Chem Thermodyn. 2013;60:191–6.

    Article  CAS  Google Scholar 

  12. Paulechka E, Blokhin AV, Rodrigues ASMC, Rocha MAA, Santos LMNBF. Thermodynamics of long-chain 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids. J Chem Thermodyn. 2016;97:331–40.

    Article  CAS  Google Scholar 

  13. Paulechka YU, Kabo GJ, Blokhin AV, Shaplov AS, Lozinskaya EI, Vygodskii YS. Thermodynamic properties of 1-alkyl-3-methylimidazolium bromide ionic liquids. J Chem Thermodyn. 2007;39:158–66.

    Article  CAS  Google Scholar 

  14. Paulechka YU, Blokhin AV, Kabo GJ. Evaluation of thermodynamic properties for non-crystallizable ionic liquids. Thermochim Acta. 2015;604:122–8.

    Article  CAS  Google Scholar 

  15. Fang DW, Wang H, Yue S. Physicochemical properties of air and water stable rhenium ionic liquids. J Phys Chem B. 2012;116:2513–9.

    Article  CAS  Google Scholar 

  16. Tong B, Liu QS, Tan ZC, Urs WB. Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A. 2010;114:3782–7.

    Article  CAS  Google Scholar 

  17. Tan ZC, Di YY. Review of modern low-temperature adiabatic calorimetry. Prog Chem. 2006;18:1234 (in Chinese).

    CAS  Google Scholar 

  18. Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 to 400 K. J Therm Anal Calorim. 2008;92:367–74.

    Article  CAS  Google Scholar 

  19. Tan ZC, Sun LX, Meng SH, Li L, Zhang JB. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. Chem J Chin Univ. 2002;34:1417 (in Chinese).

    CAS  Google Scholar 

  20. Tan ZC, Sun GY, Song YJ, Wang L, Han JR, Wang M. An adiabatic calorimeter for heat capacity measurement of small samples-the heat capacity of nonlinear optical materials KTiOPO4 and RbTiOAsO4 crystals. Thermochim Acta. 2000;247:252–3.

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Nature Science Foundation of China NSFC (Nos. 21673107 and 21703090) and Liaoning BaiQianWan Talents Program (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, DW., Liang, KH., Hu, XH. et al. Low-temperature heat capacity and standard thermodynamic functions of 1-hexyl-3-methyl imidazolium perrhenate ionic liquid. J Therm Anal Calorim 138, 1641–1647 (2019). https://doi.org/10.1007/s10973-019-08312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08312-7

Keywords

Navigation