Skip to main content
Log in

Influence of isopropyl tris(dioctylphosphoryloxy) titanate for flame-retardant TPU based on oyster shell powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flammability and droplet properties of thermoplastic polyurethane (TPU) have limited its wide application in many fields. In this article, isopropyl tris(dioctylphosphoryloxy) titanate was selected as synergism and compatilizer with oyster shell powder as flame retardant in TPU composites. And the influence of isopropyl tris(dioctylphosphoryloxy) titanate for flame-retardant TPU composites has been intensively investigated using the smoke density test, the cone calorimeter test, and the thermogravimetric analysis/infrared spectrometry, respectively. The test results show that isopropyl tris(dioctylphosphoryloxy) titanate can reduce the smoke production and heat release. And the total smoke production was reduced by 32% when the mass fraction of isopropyl tris(dioctylphosphoryloxy) titanate was 0.1%. The above results indicate that isopropyl tris(dioctylphosphoryloxy) titanate has a good application prospect in reducing the risk of TPU combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang Q, Cai H, Yang K, Yi W. Effect of biochar on mechanical and flame retardant properties of wood – Plastic Composites. Results Phys. 2017;7:2391–5.

    Article  Google Scholar 

  2. Lambertz A, van den Hil LCL, Schöb DS, Binnebösel M, Kroh A, Klinge U, et al. Analysis of adhesion formation of a new elastic thermoplastic polyurethane (TPU) mesh in comparison to polypropylene (PP) meshes in IPOM position. J Mech Behav Biomed Mater. 2016;53:366–72.

    Article  CAS  Google Scholar 

  3. Zhang J, Kong Q, Yang L, et al. Few layered Co(OH)2 ultrathin nanosheets based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 2016;18(10):3066–74.

    Article  CAS  Google Scholar 

  4. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105:86–95.

    Article  CAS  Google Scholar 

  5. Hiremath P, Arunkumar HS, Shettar M. Investigation on effect of aluminium hydroxide on mechanical and fire retardant properties of GFRP-hybrid composites. Mater Today Proc. 2017;4(10):10952–6.

    Article  Google Scholar 

  6. Wang Y, Wang F, Dong Q, Xie M, Liu P, Ding Y, et al. Core-shell expandable graphite @ aluminum hydroxide as a flame-retardant for rigid polyurethane foams. Polym Degrad Stab. 2017;146:267–76.

    Article  CAS  Google Scholar 

  7. Wang M, Zeng X-F, Chen J-Y, Wang J-X, Zhang L-L, Chen J-F. Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties. Polym Degrad Stab. 2017;146:327–33.

    Article  CAS  Google Scholar 

  8. Lu C, Gao X, Yao D, Cao C, Luo Y. Improving flame retardancy of linear low-density polyethylene/nylon 6 blends via controlling localization of clay and intumescent flame-retardant. Polym Degrad Stab. 2018;153:75–87.

    Article  CAS  Google Scholar 

  9. Kim D, Lee J, Lee S, Lim J. Surface modification of calcium carbonate nanoparticles by fluorosurfactant. Colloids Surf A. 2018;536:213–23.

    Article  CAS  Google Scholar 

  10. Narasimharao K, Ali TT, Bawaked S, Basahel S. Effect of Si precursor on structural and catalytic properties of nanosize magnesium silicates. Appl Catal A. 2014;488:208–18.

    Article  CAS  Google Scholar 

  11. Jung S, Heo NS, Kim EJ, Oh SY, Lee HU, Kim IT, et al. Feasibility test of waste oyster shell powder for water treatment. Process Saf Environ Prot. 2016;102:129–39.

    Article  CAS  Google Scholar 

  12. Elshereksi NW, Ghazali MJ, Muchtar A, Azhari CH. Studies on the effects of titanate and silane coupling agents on the performance of poly(methyl methacrylate)/barium titanate denture base nanocomposites. J Dent. 2017;56:121–32.

    Article  CAS  Google Scholar 

  13. Peng C, Chen P, You Z, Lv S, Zhang R, Xu F, et al. Effect of silane coupling agent on improving the adhesive properties between asphalt binder and aggregates. Constr Build Mater. 2018;169:591–600.

    Article  CAS  Google Scholar 

  14. Lu Y, Li X, Wu C, Xu S. Comparison between polyether titanate and commercial coupling agents on the properties of calcium sulfate whisker/poly(vinyl chloride) composites. J Alloys Compd. 2018;750:197–205.

    Article  CAS  Google Scholar 

  15. Xu Q, Chen L, Harries KA, Zhang F, Liu Q, Feng J. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr Build Mater. 2015;96:416–27.

    Article  Google Scholar 

  16. Chen X, Zhuo J, Jiao C. Thermal degradation characteristics of flame retardant polylactide using TG–IR. Polym Degrad Stab. 2012;97(11):2143–7.

    Article  CAS  Google Scholar 

  17. Qian C, Fan XJ, Fan JJ, Yuan CA, Zhang GQ. An accelerated test method of luminous flux depreciation for LED luminaires and lamps. Reliab Eng Syst Saf. 2016;147:84–92.

    Article  Google Scholar 

  18. Gye HJ, Nishizawa T. Reducing background optical density in enzyme-linked immunosorbent assay for detecting nervous necrosis virus (NNV)-specific IgM by immobilizing fish sera. Aquaculture. 2018;485:93–100.

    Article  CAS  Google Scholar 

  19. Kong Q, Wu T, Zhang J, Wang D-Y. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–44.

    Article  CAS  Google Scholar 

  20. Kong Q, Wu T, Zhang H, Zhang Y, Zhang M, Si T, et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    Article  CAS  Google Scholar 

  21. Haixiang C, Naian L, Weitao Z. Critical study on the identification of reaction mechanism by the shape of TG/DTG curves. Solid State Sci. 2010;12(4):455–60.

    Article  Google Scholar 

  22. Chaudhary RG, Juneja HD, Pagadala R, Gandhare NV, Gharpure MP. Synthesis, characterisation and thermal degradation behaviour of some coordination polymers by using TG–DTG and DTA techniques. J Saudi Chem Soc. 2015;19(4):442–53.

    Article  Google Scholar 

  23. Mittleman M. Quantitative TG/IR. Thermochim Acta. 1990;166:301–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51776101, 51206084), the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011), the Natural Science Foundation of Shandong Province (ZR2017MB016), and the Project of the State Administration of Work Safety (shandong-0039-2017AQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, X., Zhang, X. et al. Influence of isopropyl tris(dioctylphosphoryloxy) titanate for flame-retardant TPU based on oyster shell powder. J Therm Anal Calorim 139, 197–206 (2020). https://doi.org/10.1007/s10973-019-08299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08299-1

Keywords

Navigation