Skip to main content
Log in

Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A mono-component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS) was grafted on the surface of carbon black (CB) to obtain PPMS-grafted CB (PPMS-CB). The obtained PPMS-CB was well characterized and then incorporated into epoxy resins (EPs) to investigate flame retardancy and smoke suppression properties. Thermo-gravimetric analysis indicates that the synergism between PPMS and CB could improve the char-forming ability of EP composites. Limiting oxygen index (LOI) and UL94 vertical burning tests reveal that EP composite with 15 mass% PPMS-CB achieves a LOI value of 26.2% and passes the UL94 V-1 rating, while the same addition of PPMS only achieves a UL94 V-2 rating and LOI value of 22.7%. Cone calorimeter and smoke density tests show that the incorporation of PPMS-CB obviously decreases the heat release and smoke production of EPs, for example, 66.9% reduction in peak heat release rate, 54.3% reduction in peak smoke production rate and 36.5% reduction in smoke density rating, are observed in the case of EP composite with 15 mass% PPMS-CB. The excellent performance of EP/PPMS-CB composites can be ascribed to the formation of more cross-linking structures containing N and P in the condensed phase, thus producing a more compact and continuous char that acts as a thermally stable barrier against the heat and mass transfer. Overall, the chemical combination of PPMS and CB provides a new approach to develop highly efficient mono-component intumescent flame retardant and corresponding super flame-retarded polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hu Q, Peng P, Peng S, Liu J, Liu X, Zou L, Chen J. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J Therm Anal Calorim. 2017;128:201–10.

    Article  CAS  Google Scholar 

  2. Zhang F, Chen P, Wang Y, Li S. Smoke suppression and synergistic flame retardancy properties of zinc borate and diantimony trioxide in epoxy-based intumescent fire-retardant coating. J Therm Anal Calorim. 2016;123:1319–27.

    Article  CAS  Google Scholar 

  3. Xu Z, Chu Z, Yan L, Chen H, Jia H, Tang W. Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. Polym Compos. 2018. https://doi.org/10.1002/pc.25077.

    Article  CAS  Google Scholar 

  4. Wang X, Kalali EN, Wan J, Wang D. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017;69:22–46.

    Article  CAS  Google Scholar 

  5. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stabil. 2013;98:1495–505.

    Article  CAS  Google Scholar 

  6. Chen Q, Wen X, Chen H, Qi Y, Gong J, Yang H, Li Y, Tang T. Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate). Polym Adv Technol. 2015;26:128–35.

    Article  CAS  Google Scholar 

  7. Wen X, Wang Y, Gong J, Liu J, Tian N, Wang Y, Jiang Z, Qiu J, Tang T. Thermal and flammability properties of polypropylene/carbon black nanocomposites. Polym Degrad Stab. 2012;97:793–801.

    Article  CAS  Google Scholar 

  8. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol. 2013;24:916–26.

    Article  CAS  Google Scholar 

  9. Liu J, Zhang Y, Guo Y, Lu C, Pan B, Peng S, Ma J, Niu Q. Effect of carbon black on the thermal degradation and flammability properties of flame-retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym Compos. 2018;39:770–82.

    Article  CAS  Google Scholar 

  10. Yu F, Xu F, Song Y, Fang Y, Zhang Z, Wang Q, Wang F. Expandable graphite’s versatility and synergy with carbon black and ammonium polyphosphate in improving antistatic and fire-retardant properties of wood flour/polypropylene composites. Polym Compos. 2015. https://doi.org/10.1002/pc.23636.

    Article  CAS  Google Scholar 

  11. Liu L, Zhao X, Ma C, Chen X, Li S, Jiao C. Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2016;126:1821–30.

    Article  CAS  Google Scholar 

  12. Zhang BB, Chen Y, Wang F, Hong RY. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile-butadiene-styrene blends. Appl Surf Sci. 2015;351:280–8.

    Article  CAS  Google Scholar 

  13. Du W, Liu J, Wang Y, Li Y, Li Z. Polyurethane encapsulated carbon black particles and enhanced properties of water polyurethane composite films. Prog Org Coat. 2016;97:146–52.

    Article  CAS  Google Scholar 

  14. Ma H, Tong L, Xu Z, Fang Z. Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. Adv Funct Mater. 2008;18:414–21.

    Article  CAS  Google Scholar 

  15. Sun F, Yu T, Hu C, Li Y. Influence of functionalized graphene by grafted phosphorus containing flame retardant on the flammability of carbon fiber/epoxy resin (CF/ER) composite. Compos Sci Technol. 2016;136:76–84.

    Article  CAS  Google Scholar 

  16. Alongi J, Han Z, Bourbigot S. Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci. 2015;51:28–73.

    Article  CAS  Google Scholar 

  17. Xu Z, Deng N, Yan L, Chu Z. Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins. Polym Adv Technol. 2018;29:3002–13.

    Article  CAS  Google Scholar 

  18. Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate. Polym Degrad Stab. 2008;93:68–76.

    Article  CAS  Google Scholar 

  19. Xu G, Cheng J, Wu H, Lin Z, Zhang Y, Wang H. Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly(ethylene vinyl acetate) nanocomposites. Polym Compos. 2013;34:109–21.

    Article  CAS  Google Scholar 

  20. Yan L, Xu Z, Liu D. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog Org Coat. 2019;129:327–37.

    Article  CAS  Google Scholar 

  21. Yan L, Xu Z, Wang X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat. 2018;122:107–18.

    Article  CAS  Google Scholar 

  22. Shi Y, Yu B, Zheng Y, Guo J, Chen B, Pan Z, Hu Y. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym Adv Technol. 2018;29:1242–54.

    Article  CAS  Google Scholar 

  23. Makhlouf G, Hassan M, Nour M, Abdel-Monem YK, Abdelkhalik A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J Therm Anal Calorim. 2017;130:1031–41.

    Article  CAS  Google Scholar 

  24. Guan Y, Huang J, Yang J, Shao Z, Wang Y. An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res. 2015;54:3524–31.

    Article  CAS  Google Scholar 

  25. Feng C, Liang M, Zhang Y, Jiang J, Huang J, Liu H. Synergistic effect of lanthanum oxide on the flame retardant properties and mechanism of an intumescent flame retardant PLA composites. J Anal Appl Pyrol. 2016;122:241–8.

    Article  CAS  Google Scholar 

  26. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S, Dai H. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab. 2017;143:42–56.

    Article  CAS  Google Scholar 

  27. Zhao X, Gao S, Liu G. A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J Anal Appl Pyrol. 2016;122:24–34.

    Article  CAS  Google Scholar 

  28. Yan L, Xu Z, Wang X, Deng N, Chu Z. Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J Therm Anal Calorim. 2018;134(3):1505–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51676210), the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3668) and China Postdoctoral Science Foundation (No. 2017M612587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Xu, Z., Deng, N. et al. Synergistic effects of mono-component intumescent flame retardant grafted with carbon black on flame retardancy and smoke suppression properties of epoxy resins. J Therm Anal Calorim 138, 915–927 (2019). https://doi.org/10.1007/s10973-019-08298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08298-2

Keywords

Navigation