High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems


Dispersing high-conductivity nanomaterials into phase change materials (PCM) of latent heat thermal energy storage systems (LHTESS) is expected to solve the problem of poor thermal conductivity of PCMs. Accordingly, several metals, metal oxides and non-metals are employed as nanoadditives for PCMs by researchers. Besides thermal conductivity of PCMs, the other thermo-physical properties are also altered by nanoadditives. This paper provides comprehensive information on the effects of nanoadditives on the thermo-physical properties of PCMs through a critical review of related published works. The modified properties ultimately determine the charging and discharging rates of LHTESS. The extent of improvement in the thermal performance and the related issues are addressed. Further, the theoretical/empirical models developed so far for the evaluation of thermo-physical properties are deliberated.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


A, B, C, D :

Constants in Eq. (14)

B k :

Constant for considering the Kapitza resistance per unit area

B 2x :

Epolarization factor component along the x-symmetrical axis

Bi :

Nanoparticle Biot number


Constant in Eq. (15)

C 1 :

Proportional constant

C :

Specific heat (J kg−1 K−1)

D o :

Diffusion coefficient

K B :

Boltzmann constant (1.381 × 10−23 J K−1)

k :

Thermal conductivity (W m−1 K−1)

k cx :

Thermal conductivity of complex nanoparticles along x direction (W m−1 K−1)

k cx :

Thermal conductivity of complex nanoparticles along y direction (W m−1 K−1)

k l :

Thermal conductivity of nanolayer (W m−1 K−1)

L :

Latent heat (J kg−1)

l f :

Liquid mean free path

M :

Molecular mass

m :

Factor in viscosity model of Hosseini et al. [1]

N :

Avogadro number

n :

Shape function

Pr :

Prandtl number

R b :

Interfacial thermal resistance

Re B :

Brownian–Reynolds number

Re rp :

Reynolds number based on particle radius

r c :

Cluster radius (m)

r f :

Equivalent radius of a base fluid molecule (m)

r p :

Radius of the particles (m)

T :

Temperature (°C or K)

t cl :

Thickness of capping layer (m)

t v :

Thickness of the void (m)

V :

Velocity (m s−1)

X, Y :

Constants in Eq. (13)

α :

Volume fraction of base fluid moving with a particle due to Brownian motion, empirical constant in viscosity model of Hosseini et al. [1]

β :

Ratio of the nanolayer thickness to the particle radius, empirical constant in viscosity model of Hosseini et al. [1]

γ :

Ratio of the thermal conductivity of nanolayer to that of particles, empirical constant in viscosity model of Hosseini et al. [1]

ρ :

Density (kg m−3)

µ :

Viscosity (m2 s−1)

η :

Intrinsic viscosity

φ :

Volume fraction of nanoparticles

φ T :

Total volume fraction of complex nanoparticles

ψ :


τ :

Particle relaxation time (s)




Base fluid












  1. 1.

    Hosseini SM, Moghadassi AR, Henneke DE. A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim. 2010;100(3):873–7.

    Google Scholar 

  2. 2.

    Jegadheeswaran S, Pohekar SD. Performance enhancement in latent heat thermal storage system: a review. Renew Sustain Energy Rev. 2009;13(9):2225–44.

    CAS  Google Scholar 

  3. 3.

    Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev. 2018;93:245–59.

    CAS  Google Scholar 

  4. 4.

    Fan L, Khodadadi J. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011;15:24–6.

    CAS  Google Scholar 

  5. 5.

    Abdulateef AM, Mat S, Sopian K, Abdulateef J, Gitan AA. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Sol Energy. 2017;155:142–53.

    Google Scholar 

  6. 6.

    Sathish Kumar TR, Jegadheeswaran S, Chandramohan P. Performance investigation on fin type solar still with paraffin wax as energy storage media. J Therm Anal Calorim. 2019;136:101–12.

    CAS  Google Scholar 

  7. 7.

    Li W, Wan H, Lou H, Fu Y, Qin F, He G. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam. Energy. 2017;127:671–9.

    CAS  Google Scholar 

  8. 8.

    Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Heat transfer enhancement in a latent heat storage system. Sol Energy. 1999;65:171–80.

    CAS  Google Scholar 

  9. 9.

    Ettouney H, Alatiqi I, Al-Sahali M, Al-Hajirie K. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads. Energy Convers Manag. 2006;47(2):211–8.

    CAS  Google Scholar 

  10. 10.

    Shiina Y, Inagaki T. Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules. Int J Heat Mass Transf. 2005;48(2):373–83.

    CAS  Google Scholar 

  11. 11.

    Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf. 2011;133(4):040801.

    Google Scholar 

  12. 12.

    Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Google Scholar 

  13. 13.

    Mettawee E-BS, Assassa GMR. Thermal conductivity enhancement in a latent heat storage system. Sol Energy. 2007;81(7):839–45.

    CAS  Google Scholar 

  14. 14.

    Chaichan MT, Kazem HA. Using aluminium powder with PCM (paraffin wax) to enhance single slope solar water distiller productivity in Baghdad—Iraq winter weathers. Int J Renew Energy Res. 2015;5:251–7.

    Google Scholar 

  15. 15.

    Jegadheeswaran S, Pohekar SD, Kousksou T. Investigations on thermal storage systems containing micron-sized conducting particles dispersed in a phase change material. Mater Renew Sustain Energy. 2012;1(1):5.

    Google Scholar 

  16. 16.

    Davarnejad R, Barati S, Kooshki M. CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube. Springerplus. 2013;2(1):192.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lee J-H, Lee S-H, Choi C, Jang S, Choi S. A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp. 2010;1(4):269–322.

    CAS  Google Scholar 

  18. 18.

    Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids—a review. Heat Transf Eng. 2006;27(10):3–19.

    CAS  Google Scholar 

  19. 19.

    Kong L, Sun J, Bao Y. Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 2017;7(21):12599–609.

    CAS  Google Scholar 

  20. 20.

    Fan L. Ph.D. Dissertation Thesis, Auburn University, Graduate Faculty; 2011.

  21. 21.

    Hosseinizadeh SF, Darzi AAR, Tan FL. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012;51:77–83.

    CAS  Google Scholar 

  22. 22.

    Michaelides EE. Brownian movement and thermophoresis of nanoparticles in liquids. Int J Heat Mass Transf. 2015;81:179–87.

    CAS  Google Scholar 

  23. 23.

    Wei SK. Surface modification of silver nanoparticles in phase change materials for building energy application. Adv Mater Res. 2013;622–623:889–92.

    Google Scholar 

  24. 24.

    Abolghasemi M, Keshavarz A, Mehrabian MA. Thermodynamic analysis of a thermal storage unit under the influence of nano-particles added to the phase change material and/or the working fluid. Heat Mass Transf. 2012;48(11):1961–70.

    CAS  Google Scholar 

  25. 25.

    Elbahjaoui R, El Qarnia H, El Ganaoui M. Melting of nanoparticle-enhanced phase change material inside an enclosure heated by laminar heat transfer fluid flow. Eur Phys J Appl Phys. 2016;74:24616.

    Google Scholar 

  26. 26.

    Naeem LA, Al-Hattab TA, Abdulwahab MI. Study the performance of nano-enhanced phase change material NEPCM in packed bed thermal energy storage system. Int J Eng Trends Technol. 2016;37:72–9.

    Google Scholar 

  27. 27.

    Manoj Kumar P, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136:121–32.

    CAS  Google Scholar 

  28. 28.

    Lin SC, Al-Kayiem HH. Thermophysical properties of nanoparticles-phase change material compositions for thermal energy storage. Appl Mech Mater. 2012;233:127–31.

    Google Scholar 

  29. 29.

    Zeng J-L, Zhu F-R, Yu S-B, Zhu L, Cao Z, Sun L-X, et al. Effects of copper nanowires on the properties of an organic phase change material. Sol Energy Mater Sol Cells. 2012;105:174–8.

    CAS  Google Scholar 

  30. 30.

    Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf. 2007;34(5):534–43.

    CAS  Google Scholar 

  31. 31.

    Sebti SS, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini SA. Numerical study of the melting of nano-enhanced phase change material in a square cavity. J Zhejiang Univ Sci A. 2013;14(5):307–16.

    CAS  Google Scholar 

  32. 32.

    Constantinescu M, Dumitrache L, Constantinescu D, Anghel EM, Popa VT, Stoica A, et al. Latent heat nano composite building materials. Eur Polym J. 2010;46(12):2247–54.

    CAS  Google Scholar 

  33. 33.

    Kalaiselvam S, Parameshwaran R, Harikrishnan S. Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renew Energy. 2012;39(1):375–87.

    CAS  Google Scholar 

  34. 34.

    Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114:845–58.

    CAS  Google Scholar 

  35. 35.

    Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, et al. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87:369–73.

    CAS  Google Scholar 

  36. 36.

    Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochim Acta. 2012;533:46–55.

    CAS  Google Scholar 

  37. 37.

    Jesumathy S, Udayakumar M, Suresh S. Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat Mass Transf. 2012;48(6):965–78.

    CAS  Google Scholar 

  38. 38.

    Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf. 2009;36:467–70.

    CAS  Google Scholar 

  39. 39.

    He Q, Wang S, Tong M, Liu Y. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers Manag. 2012;64:199–205.

    CAS  Google Scholar 

  40. 40.

    Teng TP, Yu CC. Characteristics of phase-change materials containing oxide nano-additives for thermal storage. Nanoscale Res Lett. 2012;7(1):611.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Raja Jeyaseelan T, Azhagesan N, Pethurajan V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles. J Therm Anal Calorim. 2019;136:235–42.

    CAS  Google Scholar 

  42. 42.

    Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy Convers Manag. 2015;95:69–89.

    CAS  Google Scholar 

  43. 43.

    Weinstein RD, Kopec TC, Fleischer AS, D’Addio E, Bessel CA. The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics. J Heat Transf. 2008;130:042405.

    Google Scholar 

  44. 44.

    Shi JN, Der GM, Liu YM, Fan YC, Wen NT, Lin CK, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon N Y. 2013;51:365–72.

    CAS  Google Scholar 

  45. 45.

    Kim S, Drzal LT. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol Energy Mater Sol Cells. 2009;93(1):136–42.

    CAS  Google Scholar 

  46. 46.

    Jeon J, Jeong S-G, Lee J-H, Seo J, Kim S. High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Sol Energy Mater Sol Cells. 2012;101:51–6.

    CAS  Google Scholar 

  47. 47.

    Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy. 2013;106:25–30.

    CAS  Google Scholar 

  48. 48.

    Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon N Y. 2005;43(15):3067–74.

    CAS  Google Scholar 

  49. 49.

    Sakalaukus PJ, Mosley A, Farah BI, Hsiao KT. Thermal conductivity characterization of nano-enhanced paraffin wax. In: Proceedings of the ASME international mechanical engineering congress & exposition. Colorado: ASME; 2011. p. 1753–1755.

  50. 50.

    Ryglowski BK. M.S. Dissertation Thesis, Naval Postgraduate School, Department of Mechnaical Engineering; 2009.

  51. 51.

    Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, et al. Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B. 2002;66(16):165440.

    Google Scholar 

  52. 52.

    Kumaresan V, Velraj R, Das SK. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transf. 2012;48:1345–55.

    CAS  Google Scholar 

  53. 53.

    Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84(2):339–44.

    CAS  Google Scholar 

  54. 54.

    Lajvardi M, Zabihi F, Faraji H, Hadi I, Mollai J. The effect of phase change material on nanofluid heat transfer. In: Proceedings of the 4th international conference on nanostructures (ICNS4). Kish Island: Sharif University of Technology; 2012. p. 1176–78.

  55. 55.

    Ji P, Sun H, Zhong Y, Feng W. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes. Chem Eng Sci. 2012;81:140–5.

    CAS  Google Scholar 

  56. 56.

    Wu S, Ma X, Pen D, Bi Y. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7906-3.

    Article  Google Scholar 

  57. 57.

    Hasanabadi S, Sadrameli SM, Soheili H, Moharrami H, Heyhat MM. A cost-effective form-stable PCM composite with modified paraffin and expanded perlite for thermal energy storage in concrete. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7731-8.

    Article  Google Scholar 

  58. 58.

    Selvaraj V, Morri B, Nair LM, Krishnan H. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08042-w.

    Article  Google Scholar 

  59. 59.

    Arasu AV, Sasmito A, Mujumdar A. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm Sci. 2013;17(2):419–30.

    Google Scholar 

  60. 60.

    Arasu AV, Sasmito AP, Mujumdar AS. Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles—a numerical study. Front Heat Mass Transf. 2011;2:043005.

    Google Scholar 

  61. 61.

    Fan L, Khodadadi JM. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int J Therm Sci. 2012;62:120–6.

    CAS  Google Scholar 

  62. 62.

    Fang X, Fan L-W, Ding Q, Yao X-L, Wu Y-Y, Hou J-F, et al. Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets. Energy Convers Manag. 2014;80:103–9.

    CAS  Google Scholar 

  63. 63.

    Harikrishnan S, Kalaiselvam S. Experimental investigation of solidification and melting characteristics of nanofluid as PCM for solar water heating systems. Int J Emerg Technol Adv Eng. 2013;3:628–35.

    Google Scholar 

  64. 64.

    Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M. A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity. Int Commun Heat Mass Transf. 2014;56:114–20.

    CAS  Google Scholar 

  65. 65.

    Parlak M, Kurtuluş Ş, Temel ÜN, Yapici K. Thermal property investigation of multi walled carbon nanotubes (MWCNTs) embedded phase change materials (PCMs). In: Proceedings of 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm). Las Vegas: IEEE; 2016. p. 639–644.

  66. 66.

    Nabhan BJ. Using nanoparticles for enhance thermal conductivity of latent heat thermal energy storage. J Eng. 2015;21:37–51.

    Google Scholar 

  67. 67.

    Teng TP, Yu CC. The effect on heating rate for phase change materials containing MWCNTs. Int J Chem Eng Appl. 2012;3(5):340–2.

    CAS  Google Scholar 

  68. 68.

    Zabalegui A, Tong B, Lee H. Investigation of thermal properties in nanofluids for thermal energy storage applications. In: Proceedings of the ASME heat transfer summer conference. Minneapolis: ASME: V001T01A041-46; 2013.

  69. 69.

    Keblinski P, Eastman JA, Cahill DG. Nanofluids for thermal transport. Mater Today. 2005;8(6):36–44.

    CAS  Google Scholar 

  70. 70.

    Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78(6):718–20.

    CAS  Google Scholar 

  71. 71.

    Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei. 1993;7(4):227–33.

    CAS  Google Scholar 

  72. 72.

    Lee S, Choi SU-S, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280.

    CAS  Google Scholar 

  73. 73.

    Temel UN, Kurtulus S, Parlak M, Yapici K. Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials. J Therm Anal Calorim. 2018;132:631–41.

    CAS  Google Scholar 

  74. 74.

    Haddad Z, Abu-Nada E, Oztop HF, Mataoui A. Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int J Therm Sci. 2012;57:152–62.

    CAS  Google Scholar 

  75. 75.

    Murshed SMS, de Castro CAN. Contribution of Brownian motion in thermal conductivity of nanofluids. In: Ao SI, Gelman L, Hukins DWL, Hunter A, Korsunsky AM, editors. Proceedings of the World Congress on Engineering. London: Newswood Ltd; 2011. p. 1985–1989.

  76. 76.

    Chebbi R. Thermal conductivity of nanofluids: effect of brownian motion of nanoparticles. Am Inst Chem Eng J. 2015;61:2368–9.

    CAS  Google Scholar 

  77. 77.

    Mahmoodi M, Kandelousi S. Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation. J Mol Liq. 2015;211:15–24.

    CAS  Google Scholar 

  78. 78.

    Azizian R, Doroodchi E, Moghtaderi B. Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids. Ind Eng Chem Res. 2012;51:1782–9.

    CAS  Google Scholar 

  79. 79.

    Shukla RK, Dhir VK. Effect of Brownian motion on thermal conductivity of nanofluids. J Heat Transf. 2008;130(4):042406.

    Google Scholar 

  80. 80.

    Prasher R, Bhattacharya P, Phelan PE. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf. 2006;128:588–95.

    CAS  Google Scholar 

  81. 81.

    Pirahmadian MH, Ebrahimi A. Theoretical investigation heat transfer mechanisms in nanofluids and the effects of clustering on thermal conductivity. Int J Biosci Biochem Bioinform. 2012;2(2):90–4.

    Google Scholar 

  82. 82.

    Shin D, Banerjee D. Enhanced thermal properties of PCM based nanofluid for solar thermal energy storage. In: Proceedings of the ASME 4th international conference on energy sustainability. Phoenix: ASME; 2010. p. 841–845.

  83. 83.

    Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):133108.

    Google Scholar 

  84. 84.

    Zabalegui A, Lokapur D, Lee H. Nanofluid PCMs for thermal energy storage: latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int J Heat Mass Transf. 2014;78:1145–54.

    CAS  Google Scholar 

  85. 85.

    Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W. Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy. 2009;34(10):2117–23.

    CAS  Google Scholar 

  86. 86.

    Saeed FR, Serban EC, Vasile E, Al-Timimi MHAA, Al-Banda WHA, Abdullah MZA, et al. Nanomagnetite enhanced paraffin for thermal energy storage applications. Dig J Nanomater Biostruct. 2017;12(2):273–80.

    Google Scholar 

  87. 87.

    Teng T-P, Cheng C-M, Cheng C-P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl Therm Eng. 2013;50(1):637–44.

    CAS  Google Scholar 

  88. 88.

    Xiang J, Drzal LT. Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon N Y. 2011;49(3):773–8.

    CAS  Google Scholar 

  89. 89.

    Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Risueño E, Gil A, Rodríguez-Aseguinolaza J, Gil A, Tello M, Faik A, et al. Thermal cycling testing of Zn–Mg–Al eutectic metal alloys as potential high-temperature phase change materials for latent heat storage. J Therm Anal Calorim. 2017;129:885–94.

    Google Scholar 

  91. 91.

    Shaikh S, Lafdi K. A carbon nanotube-based composite for the thermal control of heat loads. Carbon N Y. 2012;50(2):542–50.

    CAS  Google Scholar 

  92. 92.

    Zhang Y, Chen Z, Wang Q, Wu Q. Melting in an enclosure with discrete heating at a constant rate. Exp Therm Fluid Sci. 1993;6(2):196–201.

    CAS  Google Scholar 

  93. 93.

    Ng KW, Gong ZX, Mujumdar AS. Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus. Int Commun Heat Mass Transf. 1998;25:631–40.

    CAS  Google Scholar 

  94. 94.

    Tan FL. Constrained and unconstrained melting inside a sphere. Int Commun Heat Mass Transf. 2008;35(4):466–75.

    CAS  Google Scholar 

  95. 95.

    Kole M, Dey TK. Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci. 2011;50(9):1741–7.

    CAS  Google Scholar 

  96. 96.

    Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf. 2012;55(4):874–85.

    CAS  Google Scholar 

  97. 97.

    Mostafavinia N, Eghvay S, Hassanzadeh A. Numerical analysis of melting of nano-enhanced phase change material (NePCM) in a cavity with different positions of two heat source-sink pairs. Indian J Sci Technol. 2015;8:49–61.

    CAS  Google Scholar 

  98. 98.

    Mishra PC, Mukherjee S, Nayak SK, Panda A. A brief review on viscosity of nanofluids. Int Nano Lett. 2014;4(4):109–20.

    CAS  Google Scholar 

  99. 99.

    Sridhara V, Satapathy LN. Al2O3-based nanofluids: a review. Nanoscale Res Lett. 2011;6(1):456.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Motahar S, Nikkam N, Alemrajabi AA, Khodabandeh R, Toprak MS, Muhammed M. Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int Commun Heat Mass Transf. 2014;59:68–74.

    CAS  Google Scholar 

  101. 101.

    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp Heat Transf. 1998;11(2):151–70.

    CAS  Google Scholar 

  102. 102.

    Xuan Y, Li Q. Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow. 2000;21:58–64.

    CAS  Google Scholar 

  103. 103.

    Arasu AV, Mujumdar AS. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transf. 2012;39(1):8–16.

    CAS  Google Scholar 

  104. 104.

    Ho CJ, Gao JY. An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure. Int J Heat Mass Transf. 2013;62:2–8.

    CAS  Google Scholar 

  105. 105.

    Sciacovelli A, Colella F, Verda V. Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int J Energy Res. 2013;37(13):1610–23.

    CAS  Google Scholar 

  106. 106.

    Hosseini SMJ, Ranjbar AA, Sedighi K, Rahimi M. Melting of nanoprticle-enhanced phase change material inside shell and tube heat exchanger. J Eng. 2013;2013:784681.

    Google Scholar 

  107. 107.

    Jourabian M, Farhadi M, Sedighi K. On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit. Comput Math with Appl. 2014;67(7):1358–72.

    Google Scholar 

  108. 108.

    Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of phase change material/nanoparticle suspensions in a square container subjected to a constant heat flux. Int J Heat Mass Transf. 2013;66:672–83.

    CAS  Google Scholar 

  109. 109.

    Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int J Heat Mass Transf. 2013;67:455–68.

    CAS  Google Scholar 

  110. 110.

    Dhaidan NS, Khodadadi JM, Al-Hattab TA, Al-Mashat SM. Experimental and numerical study of constrained melting of n-octadecane with CuO nanoparticle dispersions in a horizontal cylindrical capsule subjected to a constant heat flux. Int J Heat Mass Transf. 2013;67:523–34.

    CAS  Google Scholar 

  111. 111.

    Wu SY, Wang H, Xiao S, Zhu DS. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J Therm Anal Calorim. 2012;110(3):1127–31.

    CAS  Google Scholar 

  112. 112.

    Patil P, Dey T. Experimental study of latent heat thermal energy storage system using PCM with effect of metal configurations and nano particles. Int J Curr Eng Technol. 2016;5:236–40.

    Google Scholar 

  113. 113.

    Pise AT, Waghmare AV, Talandage VG. Heat transfer enhancement by using nanomaterial in phase change material for latent heat thermal energy storage system. Asian J Eng Appl Technol. 2013;2:52–7.

    Google Scholar 

  114. 114.

    Hajare VS, Gawali BS. Experimental study of latent heat storage system using nano-mixed phase change material. Int J Eng Technol Manag Appl Sci. 2015;3:37–44.

    Google Scholar 

  115. 115.

    Ebrahimi A, Dadvand A. Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alex Eng J. 2015;54(4):1003–17.

    Google Scholar 

  116. 116.

    Auriemma M, Iazzetta A. Numerical analysis of melting of parafn wax with Al2O3, ZnO and CuO nanoparticles in rectangular enclosure. Indian J Sci Technol. 2016. https://doi.org/10.17485/ijst/2016/v9i4/72601.

    Article  Google Scholar 

  117. 117.

    Murugan P, Ganesh Kumar P, Kumaresan V, Meikandan M, Malar Mohan K, Velraj R. Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and meltinge. Phase Transit. 2017;91:254–70.

    Google Scholar 

  118. 118.

    Lokesh S, Murugan P, Sathishkumar A, Kumaresan V, Velraj R. Melting/solidification characteristics of paraffin based nanocomposite for thermal energy storage applications. Therm Sci. 2015;1:1–11.

    Google Scholar 

  119. 119.

    Bashar MA. Ph.D. Dissertation Thesis, The University of Western Ontario, Department of Mechanical and Materials Engineering; 2016.

  120. 120.

    Esfe MH, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71.

    CAS  Google Scholar 

  121. 121.

    El Omari K, Kousksou T, Le GY. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Appl Therm Eng. 2011;31:3022–35.

    CAS  Google Scholar 

  122. 122.

    Sun X, Zhang Q, Medina MA, Lee KO. On the natural convection enhancement of heat transfer during phase transition processes of solid-liquid phase change materials (PCMs). Energy Proc. 2014;61:2062–5.

    Google Scholar 

  123. 123.

    Sun X, Zhang Q, Medina MA, Lee KO. Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid–liquid phase change materials (PCMs). Appl Energy. 2016;162:1453–61.

    CAS  Google Scholar 

  124. 124.

    Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R. Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy. 2014;72:636–42.

    CAS  Google Scholar 

  125. 125.

    Sebti SS, Khalilarya SH, Mirzaee I, Hosseinizadeh SF, Kashani S, Abdollahzadeh M. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Appl Sci J. 2011;13:9–15.

    CAS  Google Scholar 

  126. 126.

    Kashani S, Ranjbar AA, Abdollahzadeh M, Sebti S. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transf. 2012;48(7):1155–66.

    CAS  Google Scholar 

  127. 127.

    Mahato A, Kumar D, Kumar A. Modelling of melting/solidification behaviour of nanoparticle-enhanced phase change materials. In: Proceedings of the 22nd National and 11th International ISHMT-ASME Heat and Mass Transfer Conference. Kharagpur: ASME; 2013.

  128. 128.

    Mahdi JM, Nsofor EC. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Energy. 2017;126:501–12.

    Google Scholar 

  129. 129.

    Hosseini M, Shirvani M, Azarmanesh A. Solidification of nano-enhanced phase change material (NEPCM) in an enclosure. J Math Comput Sci. 2014;8:21–7.

    Google Scholar 

  130. 130.

    Sathishkumar A, Kathirkaman MD, Ponsankar S, Balasuthagar C. Experimental investigation on solidification behaviour of water base nanofluid PCM for building cooling applications. Indian J Sci Technol. 2016;9(39):1–7.

    CAS  Google Scholar 

  131. 131.

    Suresh Kumar KR, Kalaiselvam S. Experimental investigations on the thermophysical properties of CuO-palmitic acid phase change material for heating applications. J Therm Anal Calorim. 2017;129:1647–57.

    CAS  Google Scholar 

  132. 132.

    Temirel M. M.S. Dissertation Thesis, Drexel University, Department of Mechnaical Engineering; 2015.

  133. 133.

    Sharma RK, Ganesan P. Solidification of nano-enhanced phase change materials (NEPCM) in a trapezoidal cavity: a CFD study. Univ J Mech Eng. 2014;2(6):187–92.

    Google Scholar 

  134. 134.

    Sharma RK. Ph.D. Dissertation Thesis, University of Malaya, Faculty of Engineering; 2016.

  135. 135.

    El Hasadi YMF, Khodadadi JM. Numerical simulation of the effect of the size of suspensions on the solidification process of nanoparticle-enhanced phase change materials. J Heat Transf. 2013;135(5):052901.

    Google Scholar 

  136. 136.

    Ali Rabienataj Darzi A, Farhadi M, Jourabian M, Vazifeshenas Y. Natural convection melting of NEPCM in a cavity with an obstacle using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2013;24(1):221–36.

    Google Scholar 

  137. 137.

    Ibrahem AM, El-Amin MF, Sun S. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method. Results Phys. 2017;7:1676–82.

    Google Scholar 

  138. 138.

    Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    CAS  Google Scholar 

  139. 139.

    Sharifpur M, Yousefi S, Meyer JP. A new model for density of nanofluids including nanolayer. Int Commun Heat Mass Transf. 2016;78:168–74.

    CAS  Google Scholar 

  140. 140.

    Kashani S, Lakzian E, Lakzian K, Mastiani M. Numerical analysis of melting of nanoenhanced phase change material in latent heat thermal energy storage system. Therm Sci. 2014;18(2):335–45.

    Google Scholar 

  141. 141.

    Elbahjaoui R, El Qarnia H. Numerical analysis of melting of nano-enhanced phase change material in a rectangular latent heat storage unit. Int J Mech Mechatron Eng. 2016;10:1210–8.

    Google Scholar 

  142. 142.

    Colla L, Ercole D, Fedele L, Mancin S, Manca O, Bobbo S. Nano-phase change materials for electronics cooling applications. J Heat Transf. 2017;139(5):052406.

    Google Scholar 

  143. 143.

    Hosseini SS, Shahrjerdi A, Vazifeshenas Y. A review of relations for physical properties of nanofluids. Aust J Basic Appl Sci. 2011;5:417–35.

    Google Scholar 

  144. 144.

    Wang BX, Zhou LP, Peng XF. Surface and size effects on the specific heat capacity of nanoparticles. Int J Thermophys. 2006;27(1):139–51.

    Google Scholar 

  145. 145.

    Zhou LP, Wang BX, Peng XF, Du XZ, Yang YP. On the specific heat capacity of CuO nanofluid. Adv Mech Eng. 2010;2:172085.

    Google Scholar 

  146. 146.

    Sharma KV, Suleiman A, Hassan Hj SB, Hegde G. Considerations on the thermophysical properties of nanofluids. In: Sharma KV, Hamid NHB, editors. Engineering applications of nanotechnology. Basel: Springer; 2017. p. 33–70.

    Google Scholar 

  147. 147.

    Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Cambridge: Oxford University Press; 1904.

    Google Scholar 

  148. 148.

    Bruggeman DAG. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Ann Phys (Berlin). 1935;416:636–64.

    Google Scholar 

  149. 149.

    Wang X-Q, Mujumdar AS. A review on nanofluids—part I: theoretical and numerical investigations. Braz J Chem Eng. 2008;25(4):613–30.

    CAS  Google Scholar 

  150. 150.

    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.

    CAS  Google Scholar 

  151. 151.

    Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res. 2003;5(1/2):167–71.

    CAS  Google Scholar 

  152. 152.

    Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. J Nanoparticle Res. 2004;6(4):355–61.

    Google Scholar 

  153. 153.

    Xue QZ. Model for effective thermal conductivity of nanofluids. Phys Lett A. 2003;307(5–6):313–7.

    CAS  Google Scholar 

  154. 154.

    Xue Q, Xu WM. A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys. 2005;90(2–3):298–301.

    CAS  Google Scholar 

  155. 155.

    Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf. 2005;48(14):2926–32.

    CAS  Google Scholar 

  156. 156.

    Aybar HŞ, Sharifpur M, Azizian MR, Mehrabi M, Meyer JP. A review of thermal conductivity models for nanofluids. Heat Transf Eng. 2015;36(13):1085–110.

    CAS  Google Scholar 

  157. 157.

    Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6(7):1529–34.

    PubMed  CAS  Google Scholar 

  158. 158.

    Yang B. Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf. 2008;130:042408.

    Google Scholar 

  159. 159.

    Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49(4):1038–43.

    CAS  Google Scholar 

  160. 160.

    Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.

    CAS  Google Scholar 

  161. 161.

    Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanoparticle Res. 2004;6(6):577–88.

    Google Scholar 

  162. 162.

    Amiri A, Vafai K. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int J Heat Mass Transf. 1994;37(6):939–54.

    CAS  Google Scholar 

  163. 163.

    Faraji M. Investigation of the melting coupled natural convection of nano phase change material: a fan less cooling of heat sources. Fluid Dyn Mater Process. 2017;13:19–36.

    Google Scholar 

  164. 164.

    Wong KV, Castillo MJ. Heat transfer mechanisms and clustering in nanofluids. Adv Mech Eng. 2010;2:795478.

    Google Scholar 

  165. 165.

    Gaganpreet, Sunitha S. Effect of aggregation on thermal conductivity and viscosity of nanofluids. Appl Nanosci. 2012;2(3):325–31.

    CAS  Google Scholar 

  166. 166.

    Wang BX, Zhou LP, Peng XF. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf. 2003;46(14):2665–72.

    CAS  Google Scholar 

  167. 167.

    Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR. Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E. 2010;81(1):011406.

    Google Scholar 

  168. 168.

    Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40(10):3164–71.

    CAS  Google Scholar 

  169. 169.

    Abbaspoursani K, Allahyari M, Rahmani M. An improved model for prediction of the effective thermal conductivity of nanofluids. Int J Mech Mechatronics Eng. 2011;5:1973–6.

    Google Scholar 

  170. 170.

    Einstein A. Zur Theorie der Brownschen Bewegung. Ann Phys. 1906;324(2):371–81.

    Google Scholar 

  171. 171.

    Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571-571.

    Google Scholar 

  172. 172.

    Roscoe R. The viscosity of suspensions of rigid spheres. Br J Appl Phys. 1952;3(8):267–9.

    Google Scholar 

  173. 173.

    Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol. 1959;3(1):137–52.

    CAS  Google Scholar 

  174. 174.

    Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci. 1967;22(6):847–53.

    Google Scholar 

  175. 175.

    Nielsen LE. Generalized equation for the elastic moduli of composite materials. J Appl Phys. 1970;41(11):4626–7.

    Google Scholar 

  176. 176.

    Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(01):97.

    Google Scholar 

  177. 177.

    Lundgren TS. Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech. 1972;51(02):273.

    Google Scholar 

  178. 178.

    Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf. 2018;116:1314–25.

    CAS  Google Scholar 

  179. 179.

    Meyer JP, Adio SA, Sharifpur M, Nwosu PN. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transf Eng. 2016;37(5):387–421.

    CAS  Google Scholar 

  180. 180.

    Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9(10):367.

    Google Scholar 

  181. 181.

    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    CAS  Google Scholar 

  182. 182.

    Kean TH, Sidik NAC, Asako Y, Ken TL, Aid SR. Numerical study on heat transfer performance enhancement of phase change material by nanoparticles: a review. J Adv Res Fluid Mech Therm Sci. 2018;45:55–63.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Selvaraj Jegadheeswaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jegadheeswaran, S., Sundaramahalingam, A. & Pohekar, S.D. High-conductivity nanomaterials for enhancing thermal performance of latent heat thermal energy storage systems. J Therm Anal Calorim 138, 1137–1166 (2019). https://doi.org/10.1007/s10973-019-08297-3

Download citation


  • Energy storage
  • Phase change material
  • Heat transfer
  • Nanomaterial
  • Brownian motion
  • Agglomeration