Skip to main content
Log in

Transient analysis of viscoelastic fluid past a semi-infinite vertical cylinder with respect to the Deborah and Hartmann numbers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article investigates the visualizations of heatlines in a natural convection magnetohydrodynamic flow from a vertical cylinder via heat function concept. Fluid is electrically conducting in the existence of an applied magnetic field. The constitutive equations of time-dependent, coupled and highly nonlinear Jeffrey fluid model are evaluated mathematically by utilizing well-organized unconditionally stable finite-difference Crank–Nicolson method. Simulated results are given for several values of Deborah number and Hartmann number to present interesting aspects of the solution of the flow variables, friction factor and heat transfer rate. Results specify that required time to achieve time-independent state rapidly rises with the boosting values of Hartmann number. Boundary-layer flow visualization has been made using heatlines, isotherms and streamlines to perceive the understanding of heat and fluid flow. It is noticed that heat function value reduces for augmenting Hartmann number and also for all smaller physical parameter values and these heatlines become closer to the hot wall. It is also remarked that the hydromagnetic flow-field profiles concerning the Newtonian fluid show a different pattern from that of non-Newtonian Jeffrey fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B 0 :

Applied magnetic field (kg s−2 A−1)

\(\bar{B}\) :

Magnetic flux (Wb)

\(\overline{{ C_{\text{f} } }}\) :

Average skin friction coefficient (–)

\(\bar{E}\) :

Electric field (V m−1)

g :

Acceleration due to gravity (m s−2)

\(\bar{H}\) :

Magnetic field (kg s−2 A−1)

\(\overline{Nu}\) :

Average Nusselt number (–)

Gr :

Grashof number (–)

Ha :

Hartmann number (–)

\(\bar{J}\) :

Current density (A m−2)

Pr :

Prandtl number (–)

r 0 :

Radius of cylinder (m)

r :

Radial coordinate (m)

R :

Dimensionless radial coordinate (–)

t′:

Time (s)

t :

Dimensionless time (–)

T′:

Temperature (K)

u, v :

Velocity components in x, r directions (ms−1)

x :

Axial coordinate (m)

U, V :

Dimensionless velocity components in X, R directions (–)

\(\bar{U}\) :

Velocity vector (m s−1)

X :

Dimensionless axial coordinate (–)

β T :

Volumetric coefficient of thermal expansion (K−1)

θ :

Dimensionless temperature (–)

β :

Deborah number (–)

α :

Thermal diffusivity (m2 s−1)

ρ :

Density (kg m−3)

Θ′:

Heat function (kg m2 s−3)

μ :

Dynamic viscosity (kg m−1 s−1)

Π :

Dimensionless heat function (–)

ψ :

Dimensionless stream function (–)

σ :

Electrical conductivity (kg−1 m−3 s3 A2)

υ :

Kinematic viscosity (m2 s−1)   

λ:

Viscoelastic Jeffrey fluid parameter (−)

w:

Condition on the wall

k:

Time step level

\(\infty\) :

Free stream condition

References

  1. Chandra A, Chhabra RP. Flow over and forced convection heat transfer in Newtonian fluids from a semi-circular cylinder. Int J Heat Mass Transf. 2011;54:225–41.

    Google Scholar 

  2. Koteswara RP, Akhilesh KS, Chhabra RP. Flow of Newtonian and power-law fluids past an elliptical cylinder: a numerical study. Ind Eng Chem Res. 2010;49:6649–61.

    Google Scholar 

  3. Khan WA, Culham JR, Yovanovich MM. Fluid flow around and heat transfer from an infinite circular cylinder. ASME J Heat Transf. 2005;127:785–90.

    Google Scholar 

  4. Bharti RP, Chhabra RP, Eswaran V. Steady flow of power-law fluids across a circular cylinder. Can J Chem Eng. 2006;84:406–21.

    CAS  Google Scholar 

  5. Lee HR, Chen TS, Armaly BF. Natural convection along slender vertical cylinders with variable surface temperature. ASME J Heat Transf. 1988;110:103–8.

    Google Scholar 

  6. Sivakumar P, Bharti RP, Chhabra RP. Steady flow of power-law fluids across an unconfined elliptical cylinder. Chem Eng Sci. 2007;62:1682–702.

    CAS  Google Scholar 

  7. Chhabra RP, Soares AA, Ferreira JM. Steady non-Newtonian flow past a circular cylinder: a numerical study. Acta Mech. 2004;172:1–16.

    Google Scholar 

  8. Shah MJ, Petersen EE, Acrivos A. Heat transfer from a cylinder to a power-law non-Newtonian fluid. AIChE J. 1962;8:542–9.

    CAS  Google Scholar 

  9. Reddy GJ, Kethireddy B, Kumar M, Hoque MM. A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation. J Mol Liq. 2018;252:245–62.

    Google Scholar 

  10. Reddy GJ, Ashwini H, Kumar M. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder. Results Phys. 2018;8:671–82.

    Google Scholar 

  11. Abhijit G, Kaustav P. Natural convection of non-Newtonian power-law fluids on a horizontal plate. Int J Heat Mass Transf. 2014;70:930–8.

    Google Scholar 

  12. Alloui Z, Vasseur P. Natural convection of Carreau–Yasuda non-Newtonian fluids in a vertical cavity heated from the sides. Int J Heat Mass Transf. 2015;84:912–24.

    Google Scholar 

  13. Molla Thohura S, Md M, Sarker MMA. Natural convection of non-Newtonian fluid along a vertical thin cylinder using modified power-law model. AIP Conf Proc. 2016;1754:040021.

    Google Scholar 

  14. Reddy GJ, Kumar M, Umavathi JC, Sheremet MA. Transient entropy analysis for the flow of a second grade fluid over a vertical cylinder. Can J Phys. 2018;1:1. https://doi.org/10.1139/cjp-2017-0672.

    Article  CAS  Google Scholar 

  15. Hayat T, Mustafa M. Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet. Z Naturforsch A Phys Sci. 2010;65:711–9.

    CAS  Google Scholar 

  16. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. A mathematical study for three-dimensional boundary layer flow of Jeffery nanofluid. Z Naturforsch. 2015;70:225–33.

    CAS  Google Scholar 

  17. Rao BK. Heat transfer to non-Newtonian flows over a cylinder in cross flow. Int J Heat Fluid. 2000;21:693–700.

    CAS  Google Scholar 

  18. Satya Narayana PV, Harish Babu D. Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J Taiwan Inst Chem Eng. 2016;59:18–25.

    CAS  Google Scholar 

  19. Hayat T, Gulnaz B, Waqas M, Alsaedi A. MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating. Results Phys. 2016;6:817–23.

    Google Scholar 

  20. Malik MY, Zehra I, Nadeem S. Numerical treatment of Jeffrey fluid with pressure-dependent viscosity. Int J Numer Methods Fluids. 2012;68:196–209.

    Google Scholar 

  21. Abd-Alla AM, Abo-Dahab SM. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J Magn Magn Mater. 2016;374:680–9.

    Google Scholar 

  22. Akbar NS, Nadeem S, Mohamed A. Jeffrey fluid model for blood flow through a tapered artery with a stenosis. J Mech Med Biol. 2011;11:529–45.

    Google Scholar 

  23. Fengqin L, Yongjun J, Zhiyong X, Yongbo L, Quansheng L. Transient alternating current electroosmotic flow of a Jeffrey fluid through a polyelectrolyte-grafted nanochannel. R Soc Chem. 2017;7:782–90.

    Google Scholar 

  24. Hayat T, Muhammad T, Mustafa M, Alsaedi A. Three-dimensional flow of Jeffrey fluid with Cattaneo–Christov heat flux: an application to non-Fourier heat flux theory. Chin J Phys. 2017;55:1067–77.

    CAS  Google Scholar 

  25. Khan Ilyas. A note on exact solutions for the unsteady free convection flow of a Jeffrey fluid. Z Naturforsch. 2015;70:397–401.

    CAS  Google Scholar 

  26. Hayat T, Sajid Q, Farooq M, Alsaed A, Ayub M. Mixed convection flow of Jeffrey fluid along an inclined stretching cylinder with double stratification effect. Therm Sci. 2017;21:849–62.

    Google Scholar 

  27. Kumar PM, Kavitha A. Three-dimensional flow of Jeffrey fluid between a rotating and stationary disks with suction. Ain Shams Eng J. 2018;9:2351–6.

    Google Scholar 

  28. Ponalagusamy R, Priyadharshin S. Pulsatile MHD flow of a Casson fluid through a porous bifurcated arterial stenosis under periodic body acceleration. Appl Math Comput. 2018;333:325–43.

    Google Scholar 

  29. Srinivas J, Murthy JR. Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates. Front Heat Mass Transf. 2015;6:1–11.

    Google Scholar 

  30. Ojjela O, Ramesh K, Das SK. Second law analysis of MHD squeezing flow of Casson fluid between two parallel disks. Int J Chem React Eng. 2017;16:1542–6580.

    Google Scholar 

  31. Nagaraju G, Srinivas J, Ramana Murthy JV, Bég OA, Kadir A. Second law analysis of flow in a circular pipe with uniform suction and magnetic field effects. J Heat Transf. 2018;141:012004.

    Google Scholar 

  32. Swaina PK, Shishko A, Mukherjee P, Tiwari V, Ghorui S, Bhattacharyay R, et al. Numerical and experimental MHD studies of lead-lithium liquid metal flows in multichannel test-section at high magnetic fields. Fusion Eng Des. 2018;132:73–85.

    Google Scholar 

  33. Shafiq A, Hammouch Z, Sindhu TN. Bioconvective MHD flow of tangent hyperbolic nanofluid with Newtonian heating. Int J Mech Sci. 2017;133:759–66.

    Google Scholar 

  34. Zhang X, Chuanjie P, Zengyu X. Experimental investigations on liquid metal MHD turbulent flows through a circular pipe with a conductive wall. Fusion Eng Des. 2017;125:647–52.

    CAS  Google Scholar 

  35. Selvi RK, Muthuraj R. MHD oscillatory flow of a Jeffrey fluid in a vertical porous channel with viscous dissipation. Ain Shams Eng J. 2017;9:2503–16.

    Google Scholar 

  36. Akbar NS, Khan ZH, Nadeem S. Influence of magnetic field and slip on Jeffrey fluid in a ciliated symmetric channel with metachronal wave pattern. J Appl Fluid Mech. 2016;9:565–72.

    Google Scholar 

  37. Gaffar SA, Prasad VR, Reddy EK. Computational study of Jeffrey’s non-Newtonian fluid past a semi-infinite vertical plate with thermal radiation and heat generation/absorption. Ain Shams Eng J. 2016;8:277–94.

    Google Scholar 

  38. Hayat T, Asad S, Mustafa M, Alsaedi A. MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Comput Fluids. 2015;108:179–85.

    Google Scholar 

  39. Hayat T, Rafiq M, Ahmad B. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties. J Magn Magn Mater. 2016;410:89–99.

    CAS  Google Scholar 

  40. Babu DH, Narayana SPV. Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: a numerical study. J Magn Magn Mater. 2016;412:185–93.

    CAS  Google Scholar 

  41. Ellahi R, Riaz A, Nadeem S, Mushtaq M. Series solutions of magnetohydrodynamic peristaltic flow of a Jeffrey fluid in eccentric cylinders. Appl Math Inf Sci. 2013;7:1441–9.

    Google Scholar 

  42. Ravi Kiran G, Radhakrishnamacharya G. Influence of magnetic field on dispersion of a solute in peristaltic flow of a Jeffrey fluid. ARPN J Eng Appl Sci. 2013;8:969–77.

    Google Scholar 

  43. Muhammad T, Hayat T, Alsaedi A, Qayyum A. Hydromagnetic unsteady squeezing flow of Jeffrey fluid between two parallel plates. Chin J Phys. 2017;55:1511–22.

    CAS  Google Scholar 

  44. Imran MA, Miraj F, Khan I, Tlili I. MHD fractional Jeffrey’s fluid flow in the presence of thermo diffusion, thermal radiation effects with first order chemical reaction and uniform heat flux. Results Phys. 2018;10:10–7.

    Google Scholar 

  45. Kimura S, Bejan A. The heatline visualization of convective heat transfer. ASME J Heat Transf. 1983;105:916–9.

    Google Scholar 

  46. Bejan A. Convection heat transfer. 1st ed. New York: Wiley; 1984.

    Google Scholar 

  47. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Heatline visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls. Int J Heat Mass Transf. 2016;100:835–50.

    Google Scholar 

  48. Arbin N, Saleh H, Hashim I, Chamkha AJ. Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach. Int J Therm Sci. 2016;100:169–84.

    Google Scholar 

  49. Mahapatra PS, Mukhopadhyay A, Manna NK, Ghosh K. Heatlines and other visualization techniques for confined heat transfer systems. Int J Heat Mass Transf. 2018;118:1069–79.

    Google Scholar 

  50. Rahimi A, Sepehr M, Lariche MJ, Mesbah M, Kasaeipoor A, Malekshah EH. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method. Physica E Low-dimens Syst Nanostruct. 2018;97:347–62.

    CAS  Google Scholar 

  51. Morega A. The heat function approach to the thermomagnetic convection of electroconductive melts. Rev rou des Sci Tech Electrotec et Energ. 1988;33:359–68.

    Google Scholar 

  52. Ravi Kiran G, Radhakrishnamacharya G. Effect of homogeneous and heterogeneous chemical reactions on peristaltic transport of a Jeffrey fluid through a porous medium with slip condition. J Appl Fluid Mech. 2015;8:521–8.

    Google Scholar 

  53. Ravi Kiran G, Santhosh N, Radhakrishnamacharya G. Effect of peristalsis on dispersion in a chemically reactive Jeffrey fluid flow with wall properties. Int J Pure Appl Math. 2017;113:38–46.

    Google Scholar 

  54. Rani HP, Reddy GJ. MHD-Conjugate heat transfer analysis for transient free convective flow past a vertical slender hollow cylinder. Am J Comput Appl Math. 2012;2:33–41.

    Google Scholar 

  55. Rani HP, Reddy GJ, Kim CN. Numerical analysis of couple stress fluid past an infinite vertical cylinder. Eng Appl Comput Fluid Mech. 2011;5:159–69.

    Google Scholar 

  56. Rani HP, Kim CN. A numerical study on unsteady natural convection of air with variable viscosity over an isothermal vertical cylinder. Korean J Chem Eng. 2010;27:759–65.

    CAS  Google Scholar 

Download references

Acknowledgements

The first author wishes to thank DST-INSPIRE (Code No. IF160028) for the grant of research fellowship and to Central University of Karnataka for providing the research facilities. The authors wish to express their gratitude to the reviewers who highlighted important areas for improvement in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Janardhana Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Reddy, G.J. & Ragoju, R. Transient analysis of viscoelastic fluid past a semi-infinite vertical cylinder with respect to the Deborah and Hartmann numbers. J Therm Anal Calorim 139, 507–517 (2020). https://doi.org/10.1007/s10973-019-08285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08285-7

Keywords

Navigation