Experimental analysis on Li-ion battery local heat distribution

Abstract

This work presents experimental analysis on the local heat flux distribution for a prismatic lithium-ion battery at various charge/discharge rates. Experimental setup for a large prismatic lithium-ion battery thermal testing is developed, and experimental investigations of the thermal dissipation of lithium-ion battery are conducted under various charge/discharge rates to provide more information on battery heat generation. The aim of the present study is to evaluate the heat generated by the electrochemical reaction inside a lithium-ion cell during numerous charging/discharging cycles until reaching steady state. In this paper, the distribution of temperature is presented for a prismatic Li-ion battery at different operating conditions. The results show that a higher battery temperature is obtained at the beginning of the charge cycle and the lower temperature is reached at the end of charge cycle and the beginning of discharge cycle. Furthermore, it is observed that the increase in charge/discharge current rate increases the battery temperature, the generated heat flux and the part of the irreversible heat compared to the reversible heat. It can be observed that at C-rate of 3C irreversible heat reaches 80% of the total generated heat.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

\(A_{\text{i}}\) :

Area (m2)

\(h_{\text{conv}}\) :

Convective heat transfer coefficient (\({\text{W m}}^{ - 2 } {\text{K}}^{ - 1}\))

\(\dot{Q}\) :

Heat (W)

\(U_{\text{OC}}\) :

Open-circuit voltage (V)

\(\emptyset\) :

Heat flux density (\({\text{W m}}^{ - 2}\))

F :

Faraday’s constant (\(96,487 {\text{C mol}}^{ - 1}\))

I :

Current (A)

n :

Number of exchanged electrons

R :

Electrical resistance (Ω)

T :

Temperature (K)

U :

Voltage (V)

ΔI :

Variation in current (A)

ΔS :

Variation in entropy (\({\text{J K}}^{ - 1} {\text{mol}}^{ - 1} )\)

ΔV :

Variation in voltage (V)

k :

Thermal conductivity \(({\text{W m}}^{ - 1 } {\text{K}}^{ - 1}\))

amb:

Ambient

ch:

Charge process

disch:

Discharge process

irrev:

Irreversible

rev:

Reversible

S:

Surface

References

  1. 1.

    Wu B, Yufit V, Marinescu M, Offer GJ, Martinez-Botas RF, Brandon NP. Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs. J Power Sources. 2013;243:544–54.

    CAS  Article  Google Scholar 

  2. 2.

    Lai Y, Du S, Ai L, Ai L, Cheng Y, Tang Y, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates. Int J Hydrogen Energy. 2015;40:13039–49.

    CAS  Article  Google Scholar 

  3. 3.

    Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilehto K, Skogström L, et al. Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res. 2014;38:1424–37.

    CAS  Article  Google Scholar 

  4. 4.

    Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles. Int J Energy Res. 2013;37:13–24.

    CAS  Article  Google Scholar 

  5. 5.

    Zhong G, Mao B, Wang C, Jiang L, Xu K, Sun J, et al. Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim. 2018; https://doi.org/10.1007/s10973-018-7599-7.

    Article  Google Scholar 

  6. 6.

    Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132:65–75.

    CAS  Article  Google Scholar 

  7. 7.

    Chen M, Dongxu O, Cao S, Liu J, Wang Z, Wang J. Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2018; https://doi.org/10.1007/s10973-018-7864-9.

    Article  Google Scholar 

  8. 8.

    Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129:181–8.

    CAS  Article  Google Scholar 

  9. 9.

    Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2018; https://doi.org/10.1007/s10973-018-7899-y.

    Article  Google Scholar 

  10. 10.

    Teng H, Ma Y, Yeow K, Thelliez M. An analysis of a lithium-ion battery system with indirect air cooling and warm-up. SAE Int J Passeng Cars Mech Syst. 2011;4(2011-01-2249):1343–57.

    Article  Google Scholar 

  11. 11.

    Mutyala MSK, Zhao J, Li J, Pan H, Yuan C, Li X. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples. J Power Sources. 2014;260:43–9.

    CAS  Article  Google Scholar 

  12. 12.

    Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions. Int Commun Heat Mass Transf. 2016;71:35–43.

    CAS  Article  Google Scholar 

  13. 13.

    Cicconi P, Landi D, Germani M. Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV. Appl Energy. 2017;192:159–77.

    Article  Google Scholar 

  14. 14.

    Liu R, Chen J, Xun J, Jiao K, Du Q. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge. Appl Energy. 2014;132:288–97.

    Article  Google Scholar 

  15. 15.

    He F, Li X, Ma L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells. Int J Heat Mass Transf. 2014;72:622–9.

    CAS  Article  Google Scholar 

  16. 16.

    Chen K, Unsworth G, Li X. Measurements of heat generation in prismatic Li-ion batteries. J Power Sources. 2014;261:28–37.

    CAS  Article  Google Scholar 

  17. 17.

    Emre G, Ekici Ö, Köksal M. D CFD modeling and experimental testing of thermal behavior of a Li-Ion battery. Appl Thermal Eng. 2017;120:484–95.

    Article  Google Scholar 

  18. 18.

    Damay N, Forgez C, Bichat M-P, Friedrich G. Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation. J Power Sources. 2015;283:37–45.

    CAS  Article  Google Scholar 

  19. 19.

    Chen SC, Wan CC, Wang YY. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140:111–24.

    CAS  Article  Google Scholar 

  20. 20.

    Zhang X. Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta. 2011;56:1246–55.

    CAS  Article  Google Scholar 

  21. 21.

    Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. Electrochem Soc J (ISSN 0013-4651), vol 132, Jan 1985, p 5–12. 1985;132:5–12.

  22. 22.

    Hunt G. FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles. 2003.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hasna Louahlia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizk, R., Louahlia, H., Gualous, H. et al. Experimental analysis on Li-ion battery local heat distribution. J Therm Anal Calorim 138, 1557–1571 (2019). https://doi.org/10.1007/s10973-019-08283-9

Download citation

Keywords

  • Heat flux distribution
  • Lithium-ion battery
  • Reversible heat
  • Irreversible heat
  • Heat flux sensor