Skip to main content
Log in

Industrial optimization of multi-effect desalination equipment for olefin complex

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research consists of a brief overview of some methods used to produce freshwater and how they work, the obvious points of performance, and the advantages and disadvantages of each of these methods. The effects of change in operation parameters on the performance as well as thermal energy consumption of sample MED–TVC (MED with thermal vapor compression) are investigated. This article represents the result of experimental and actual changes provided by process engineering department in Kavian Petrochemical Company (11th Olefin) to find best operating conditions for system stability. The most significant reason to opt these MED units is the internal steam source (5 * 140 ton h−1 boilers) which is located inside the complex’s battery limit making the control of operational variables more accessible. Also, the performance of the system and thermodynamic and thermo-hydraulic equations have been studied carefully. By writing a solving algorithm for the governing equations and implementing it in the MATLAB software, a conceptual design of the system has been considered. By using the written program, the effect of change in parameters such as inlet steam pressure, seawater temperature, feed water temperature, inlet seawater flow, the performance ratio on the steam consumption has been reviewed. Although most of the above-mentioned changes cannot be implemented after the system designing, changes in the steam consumption that is generated inside the complex have been investigated and the results have been communicated to the operation department through the process engineering department to modify the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Inner cross section of the pipe (m2)

\(C_{\text{p}}\) :

Heat capacity \(\left( {{\text{kJ}}\,{\text{Kg}}^{ - 1} \,{\text{k}}} \right)\)

h :

Enthalpy \(\left( {{\text{MMBtu}}\,{\text{h}}^{ - 1} } \right)\)

m :

Mass flow \(\left( {{\text{lb}}\,{\text{h}}^{ - 1} } \right)\)

n :

Molar flow \(\left( {{\text{lbmol}}\,{\text{h}}^{ - 1} } \right)\)

Q :

Heat flux \(\left( {{\text{MMBtu}}\,{\text{h}}^{ - 1} } \right)\)

S :

Entropy \(\left( {{\text{MMBtu}}\,{\text{h}}^{ - 1} \,{\text{k}}} \right)\)

T :

Temperature \(\left( {\text{K}} \right)\)

\(T_{\text{r}}\) :

Resource temperature \(\left( {\text{k}} \right)\)

CR:

Concentration

d :

Pipe diameter (m)

ER:

Entrainment ratio

GOR:

Gain output ratio

h :

Convectional heat coefficient \(\left( {{\text{kW}}\,{\text{m}}^{ - 2} \,{\text{k}}^{1} } \right)\)

H :

Tube bundle height (m)

L :

Tube bundle length (m)

P :

Pressure (kPa)

R :

Thermal resistance \(\left( {{\text{m}}^{2} \,{\text{K}}\,{\text{kw}}^{ - 1} } \right)\)

Re :

Reynolds

TTD:

Temperature difference in cells (°C)

U :

Overall heat coefficient \(\left( {{\text{kW}}\,{\text{m}}^{ - 2} \,{\text{k}}^{1} } \right)\)

Γ :

Falling film mass flux on pipe length \(\left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right)\)

δ :

Falling film thickness (m)

Δ:

Length segment (m)

Δρ :

Phase density difference \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

µ :

Dynamic viscosity \(\left( {{\text{N}}\,{\text{s}}\,{\text{m}}^{ - 2} } \right)\)

References

  1. Darwish MA, Alsairafi A. Technical comparison between TVC/MEB and MSF. Desalination. 2004;170:223–39.

    Article  CAS  Google Scholar 

  2. Al-Shammiri M, Safar M. Multi-effect distillation plants: state of the art. Desalination. 1999;126(1):45–59.

    Article  CAS  Google Scholar 

  3. Hajbi F, Hammi H, Solimando R, M’nif A. Evaporation of a reverse osmosis discharge studied by Pitzer model and solubility phase diagrams. Fluid Phase Equilib. 2011;307(2):126–34.

    Article  CAS  Google Scholar 

  4. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335.

    Article  CAS  Google Scholar 

  5. Buros OK. The ABC’s of desalting. Topsfield: International Desalination Association; 1990.

    Google Scholar 

  6. Saleh S, Pirouzfar V, Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7809-3.

    Article  Google Scholar 

  7. Barza A, Mehri B, Pirouzfar V. Mathematical modeling of ethane cracking furnace of olefin plant with coke formation approach. Int J Chem Reactor Eng. 2018;16(9):20170243.

    Article  CAS  Google Scholar 

  8. Zolfaghari Mohabbat, Pirouzfar Vahid, Sakhaeinia Hossein. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants. Energy. 2017;124:481–91.

    Article  CAS  Google Scholar 

  9. El-Sayed YM, Silver RS. Chapter 2 – fundamentals of distillation. In: Spiegler KS, Laird ADK, editors. Princ. Desalin., Academic Press; 1980, p. 55–109. https://doi.org/10.1016/B978-0-12-656701-4.50008-5.

    Chapter  Google Scholar 

  10. Janajreh I, Hasania A, Fath H. Numerical simulation of vapor flow and pressure drop across the demister of MSF desalination plant. Energy Convers Manag. 2013;65:793–800.

    Article  CAS  Google Scholar 

  11. Husain A, Hassan A, Al-Gobaisi DM, Al-Radif A, Woldai A, Sommariva C. Modeling, simulation, optimization and control of multistage flashing (MSF) desalination plants part I: modeling and simulation. Desalination. 1993;92:21–41.

    Article  CAS  Google Scholar 

  12. Narmine HA, EL-Fiqi AK. Thermal performance of seawater desalination systems. Desalination. 2003;158:127–42.

    Article  Google Scholar 

  13. Steven CH. Assessment of desalination treatment processes for future water supplies. M.Sc. thesis, Massachusetts Institute of Technology; 2003.

  14. Miller JE. Review of water resources and desalination technologies. SAND; 2003. p. 2003–0800.

  15. Zivi SM. Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J Heat Transf. 1964;86(2):247–51.

    Article  Google Scholar 

  16. El-Dessouky HT, Alatiqi IM, Ettouney HT, Al-Deffeeri NS. Performance of wire mesh mist eliminator. Chem Eng Process. 2000;39(2):129–39.

    Article  CAS  Google Scholar 

  17. Jaster H, Kosky PG. Condensation heat transfer in a mixed flow regime. Int J Heat Mass Transf. 1976;19(1):95–9.

    Article  Google Scholar 

  18. Kocamustafaoğulları G, Chen IY. Horizontal tube evaporators: part I. Theoretically-based correlations. Int Commun Heat Mass Transf. 1989;16(4):487–99.

    Article  Google Scholar 

  19. Fan Niroo®. Operation and maintenance manual, Doc no. K443-44-CN-090; 2011.

  20. Han J, Leroy SF. Falling film evaporation and boiling in circumferential and axial grooves on horizontal tubes. Ind Eng Chem Process Des Dev. 1985;24(3):570–5.

    Article  CAS  Google Scholar 

  21. Chato JC. Laminar condensation inside horizontal and inclined Tubes. ASHRAE J. 1962;4:52–60.

    Google Scholar 

  22. Hou H, Qincheng B, Hong M, Gang W. Distribution characteristics of falling film thickness around a horizontal tube. Desalination. 2012;285:393–8.

    Article  CAS  Google Scholar 

  23. Shah MM. A general correlation for heat transfer during film condensation inside pipes. Int J Heat Mass Transf. 1979;22(4):547–56.

    Article  Google Scholar 

  24. El-Dessouky HT, Ettouney HM. Multiple-effect evaporation desalination systems. thermal analysis. Desalination. 1999;125(1):259–76.

    Article  CAS  Google Scholar 

  25. El-Dessouky HT, Ettouney HT, Mandani F. Performance of parallel feed multiple effect evaporation system for seawater desalination. Appl Therm Eng. 2000;20:1673–706.

    Article  Google Scholar 

  26. Ashour MM. Steady state analysis of the tripoli west LT-HT-MED plant. Desalination. 2002;152:191–4.

    Article  Google Scholar 

  27. Bin Amer AO. Development and optimization of ME-TVC desalination system. Desalination. 2009;249(3):1315–31.

    Article  CAS  Google Scholar 

  28. Rahbar M. Improvement of the design and operation of desalination plants by computer modeling and simulation. Desalination. 1993;92(1):253–69.

    Article  CAS  Google Scholar 

  29. Shivayyanamath S, Tewari PK. Simulation of start-up characteristics of multi-stage flash desalination plants. Desalination. 2003;155:277–86.

    Article  CAS  Google Scholar 

  30. El-Dessouky Hisham, Ettouney Hisham, Al-Fulaij Hala, Mandani Faisal. Multistage flash desalination combined with thermal vapor compression. Chem Eng Process. 2000;39:343–56.

    Article  CAS  Google Scholar 

  31. Incropera FP. Introduction to heat transfer. New York: Wiley; 2011.

    Google Scholar 

  32. Palen JW, Breber G, Taborek J. Prediction of flow regimes in horizontal tube-side condensation. Heat transf Eng. 1979;1(2):47–57.

    Article  CAS  Google Scholar 

  33. Ould Didi MB, Kattan N, Thome JR. Prediction of two-phase pressure gradients of refrigerants in horizontal tubes. Int J Refrig. 2002;25(7):935–47.

    Article  CAS  Google Scholar 

  34. El-Dessouky HT, Ettouney HT, Alatiqi IM, Al-Nuwaibit G. Evaluation of steam jet ejectors. Chem Eng Process. 2002;41:551–61.

    Article  CAS  Google Scholar 

  35. Thome JR. Wolverine engineering data book III. Lausanne: Wolverine Tube Inc; 2009.

    Google Scholar 

  36. Cengel YA, Boles MA. Thermodynamics: an engineering approach. 5th ed. New York: McGraw Hill; 2006.

    Google Scholar 

  37. Lide DR, editor. Handbook of chemistry and physics. 73rd ed. Boca Raton: CRC Press; 1992.

    Google Scholar 

  38. Power BR. Steamjet ejectors for process industries. New York: McGraw-Hill; 1994.

    Google Scholar 

  39. Michels T. Recent achievements of low temperature multiple effect desalination in the western areas of Abu Dhabi, UAE. Desalination. 1993;93:111–8.

    Article  CAS  Google Scholar 

  40. Lienhard IV JH, Lienhard VA. Heat transfer textbook. Cambridge: Phlogiston Press; 2008.

    Google Scholar 

  41. Bejan A. Convective heat transfer. 3rd ed. New York: Wiley; 2004 (Chapter 10).

    Google Scholar 

  42. El-Dessouky HT, Ettouney HM. Fundamentals of salt water desalination. New York: Elsevier; 2002.

    Google Scholar 

  43. Cipollina A. Experimental study and dynamic modelling of multi stage flash desalination units. Ph.d. thesis, University of Palermo, Italy; 2004–2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Pirouzfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barza, A., Shourije, S.R. & Pirouzfar, V. Industrial optimization of multi-effect desalination equipment for olefin complex. J Therm Anal Calorim 139, 237–249 (2020). https://doi.org/10.1007/s10973-019-08279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08279-5

Keywords

Navigation