Skip to main content
Log in

Interplay between composition, structural dynamics and thermodynamic data in amino acid nitrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A systematic thermodynamic study has been performed for a series of nitrates having cations derived from the α-amino acids glycine (Gly), l-proline (Pro) and l-glutamine (Gln). Combustion and formation enthalpies were for the first time obtained for these amino acid nitrates (AANO3) by using combustion calorimetry. The thermal behavior in the dynamic regime was investigated by DSC measurements. The values of the formation enthalpies for nitrates were compared with those of the corresponding amino acids and discussed in correlation with structural information obtained from spectral data. FTIR and Raman techniques were used to identify functional groups and hydrogen bonds. Large transmittance in the visible region and the band gap energy value obtained from UV–Vis spectra suggest that these materials are suitable for optoelectronic applications. The band gap values are increasing in the order GlyNO3 < ProNO3 < GlnNO3. Additional polarimetric measurements confirmed the chiral nature of ProNO3 and GlnNO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramabadran U, Zelmon DE, Kennedy GC. Electro-optic, piezoelectric, and dielectric properties of zinc tris thiourea sulfate. Appl Phys Lett. 1992;60:2589–91. https://doi.org/10.1063/1.106918.

    Article  CAS  Google Scholar 

  2. Meera K, Muralidharan R, Dhanasekaren R, Prapun M, Ramasamy P. Growth of nonlinear optical material: l-arginine hydrochloride and its characterization. J Cryst Growth. 2004;263:510–6. https://doi.org/10.1016/j.jcrysgro.2003.11.093.

    Article  CAS  Google Scholar 

  3. Haja Hameed AS, Lan CW. Nucleation, growth and characterization of L-tartaric acid- nicotinamide NLO crystals. J Cryst Growth. 2004;270:475–80. https://doi.org/10.1016/j.jcrysgro.2004.07.001.

    Article  CAS  Google Scholar 

  4. Martin Britto Dhas SA, Natarajan S. Growth and characterization of a new organic NLO material: Glycine nitrate. Opt Commun. 2007;278:434–8. https://doi.org/10.1016/j.optcom.2007.06.052.

    Article  CAS  Google Scholar 

  5. Vimalan M, Helan Flora X, Tamilselvan S, Jeyasekaran R, Sagayaraj P, Mahadevan CK. Optical, thermal, mechanical and electrical properties of a new NLO material: mono- L-alaninium nitrate (MAN). Arch Phys Res. 2010;1:44–53.

    CAS  Google Scholar 

  6. Pal T, Kar T, Wang XQ, Zhou GY, Wang D, Cheng XF, Yang ZH. Growth and characterization of nonlinear optical material, LAHClBr—a new member of l-arginine halide family. J Cryst Growth. 2002;235:523–8. https://doi.org/10.1016/S0022-0248(01)01818-8.

    Article  CAS  Google Scholar 

  7. Ittyachan R, Sagayaraj PJ. Growth and characterization of a new promising NLO l-histidine bromide crystal. J Cryst Growth. 2003;249:557–60. https://doi.org/10.1016/S0022-0248(02)02116-4.

    Article  CAS  Google Scholar 

  8. Rajan Babu D, Jayaraman D, Mohan Kumar R, Jayavel RJ. Growth and characterization of non-linear optical l-alanine tetrafluoroborate (L-AlFB) single crystals. J Cryst Growth. 2002;245:121–5. https://doi.org/10.1016/S0022-0248(02)01708-6.

    Article  CAS  Google Scholar 

  9. Vimalan M, Ramanand A, Sagayaraj P. Synthesis, growth and characterization of l-alaninium oxalate—a novel organic NLO crystal. Cryst Res Technol. 2007;42:1091–6.

    Article  CAS  Google Scholar 

  10. Natarajan S, Martin Britto SA, Ramachandran E. Growth, thermal, spectroscopic, and optical studies of l-alaninium maleate, a new organic nonlinear optical material. Cryst Growth Des. 2006;6:137–40. https://doi.org/10.1021/cg0502439.

    Article  CAS  Google Scholar 

  11. Razzetti C, Ardoino M, Zanotti L, Zha M, Paorici C. Solution Growth and Characterisation of l-alanine, single crystals. Cryst Res Technol. 2002;37:456–65.

    Article  CAS  Google Scholar 

  12. Moolya BN, Dharmaprakash SM. Growth and characterization of nonlinear optical diglycinehydrobromide single crystals. Mater Lett. 2007;61:3559–62. https://doi.org/10.1016/j.matlet.2006.11.117.

    Article  CAS  Google Scholar 

  13. Hanumantharao R, Kalainathan S. Growth, spectroscopic, dielectric and nonlinear optical studies of semi organic nonlinear optical crystal—l-alanine lithium chloride. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;A86:80–4. https://doi.org/10.1016/j.saa.2011.10.006.

    Article  CAS  Google Scholar 

  14. Rubyand A, Alfred Cecil Raj S. Growth, spectral, optical and thermal characterization of NLO organic crystal—glycine thiourea. Int J ChemTech Res. 2013;5:482–90.

    Google Scholar 

  15. Tao GH, He L, Sun N, Kou Y. New generation ionic liquids: cations derived from amino acids. Chem Commun. 2005;28:3562–4. https://doi.org/10.1039/B504256A.

    Article  Google Scholar 

  16. Gheorghe D, Neacşu A, Contineanu I, Teodorescu F, Tănăsescu S. Thermochemical properties of l-alanine nitrate and L-alanine ethyl ester nitrate. J Therm Anal Calorim. 2014;118(2):731–7. https://doi.org/10.1007/s10973-014-3996-8.

    Article  CAS  Google Scholar 

  17. Zhu JF, He L, Zhang L, Huang M, Tao GH. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids. J Phys Chem. 2012;B116:113–9. https://doi.org/10.1021/jp209649h.

    Article  CAS  Google Scholar 

  18. Contineanu I, Neacsu A, Gheorghe D, Tanasescu S, Perisanu S. The thermochemistry of threonine stereoisomers. Thermochim Acta. 2013;563:1–5. https://doi.org/10.1016/j.tca.2013.04.001.

    Article  CAS  Google Scholar 

  19. Neacsu A, Gheorghe D, Contineanu I, Tanasescu S, Perisanu S. A thermochemical study of serine stereoisomers. Thermochim Acta. 2014;595:1–5. https://doi.org/10.1016/j.tca.2014.08.032.

    Article  CAS  Google Scholar 

  20. Gheorghe D, Neacsu A, Contineanu I, Tanasescu S, Perisanu S. A calorimetric study of L-, D- and DL-isomers of tryptophan. J Therm Anal Calorim. 2017;130(2):1145–52. https://doi.org/10.1007/s10973-017-6396-z.

    Article  CAS  Google Scholar 

  21. Anghel EM, Pavel PM, Constantinescu M, Petrescu S, Atkinson I, Buixaderas E. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage. Apply Energy. 2017;208:1222–31. https://doi.org/10.1016/j.apenergy.2017.09.031.

    Article  CAS  Google Scholar 

  22. Jessup RS. Precise measurement of heat of combustion with a bomb calorimeter, National Bureau of Standards Monograph 7. Washington, DC: National Bureau of Standards; 1960.

    Google Scholar 

  23. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry (Chapter 3), vol. 1. New York: Interscience; 1956. p. 27.

    Google Scholar 

  24. Hubbard WN, Scott DW, Waddington G. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. p. 75–128.

    Google Scholar 

  25. Krishnan RS, Sankaranarayanan VN, Krishnan K. Raman and Infrared spectra of amino acids. J Indian Inst Sci. 1973;55:66–116.

    CAS  Google Scholar 

  26. Krishnan RS, Balasubramanian K. Raman spectrum of crystalline & #x03B1;-glycine. Proc Indian Acad Sci Sect A. 1958;48:55–61.

    Article  Google Scholar 

  27. Pandiarajan S, Umadevi M, Sasirekha V, Rajaram RK, Ramakrishnan V. FT-IR and FT-Raman spectral studies of bis(l-proline) hydrogen nitrate and bis(l-proline) hydrogen perchlorate. J Raman Spectrosc. 2005;36:950–61. https://doi.org/10.1002/jrs.1390.

    Article  CAS  Google Scholar 

  28. Dhamelincourt P, Ramirez FJ. Polarized micro-Raman and FT-IR spectra of L-glutamine. Appl Spectrosc. 1993;47:446–51.

    Article  CAS  Google Scholar 

  29. Rozenberg M, Shoham G, Reva I, Fausto R. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides. Phys Chem Chem Phys. 2005;7:2376–83. https://doi.org/10.1039/B503644E.

    Article  PubMed  CAS  Google Scholar 

  30. Baran JA, Ratajczak H. Polarized vibrational studies of the α-glycine single crystal Part I. Polarized Raman spectra-the problem of effective local Raman tensors for the glycine zwitterions. Vib Spectrosc. 2007;43:125–39. https://doi.org/10.1016/j.vibspec.2006.07.002.

    Article  CAS  Google Scholar 

  31. Baran JA, Drozd MA, Ratajczak H. Polarised IR and Raman spectra of monoglycine nitrate single crystal. J Mol Struct. 2010;976:226–42. https://doi.org/10.1016/j.molstruc.2010.03.055.

    Article  CAS  Google Scholar 

  32. Mary YS, Ushakumari L, Harikumar B, Tresa Varghese H, Yohannan Panicker C. FT-IR, FT-Raman and SERS spectra of L-proline. J Iran Chem Soc. 2009;6:138–44.

    Article  CAS  Google Scholar 

  33. Nakamoto K, Infrared and raman spectra of inorganic and coordination compounds, part A: theory and applications in inorganic chemistry. Wiley; 2009. p. 279–81.

  34. Pawlukojc A, Hołderna-Natkaniec K, Bator G, Natkaniec I. L-glutamine: dynamical properties investigation by means of INS, IR, RAMAN, 1H NMR and DFT techniques. Chem Phys. 2014;443:17–25. https://doi.org/10.1016/j.chemphys.2014.08.003.

    Article  CAS  Google Scholar 

  35. Bykov SV, Myshakina NS, Asher SA. Dependence of glycine CH2 stretching frequencies on conformation, ionization state, and hydrogen bonding. J Phys Chem. 2008;B112:5803–12. https://doi.org/10.1021/jp710136c.

    Article  CAS  Google Scholar 

  36. Tao GH, He L, Liu WS, Xu L, Xiong W, Wang T, Kou Y. Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem. 2006;8:639–46. https://doi.org/10.1039/B600813E.

    Article  CAS  Google Scholar 

  37. Vijayakumar T, Hubert Joe I, Reghunadhan Nair CP, Jayakumar VS. Non-bonded interactions and its contribution to the NLO activity of Glycine Sodium Nitrate—a vibrational approach. J Mol Struct. 2008;877:20–35. https://doi.org/10.1016/j.molstruc.2007.07.021.

    Article  CAS  Google Scholar 

  38. CODATA Bulletin nr. 28 (April 1978), Recommended Key Values for Thermodynamics, 1977, Paris, France.

  39. Olofsson G. Assignment of Uncertainties. In: Sunner S, Mansson M, editors. Combustion calorimetry. London: Pergamon Press; 1979. p. 137–59.

    Chapter  Google Scholar 

  40. Vasilév VP, Borodin VA, Kopnyshev SB. Calculation of the standard enthalpies of combustion and of formation of crystalline organic acids and complexones from the energy contributions of atomic groups. Russ J Phys Chem. 1991;65:29–32.

    Google Scholar 

  41. Ngauv SN, Sabbah R, Laffitte M. Thermodynamique de composes azotes. III. Etude thermochimique de la glycine et de la l-α-alanine. Thermochim Acta. 1977;20:371–80.

    Article  Google Scholar 

  42. Huffman HM, Fox SW, Ellis EL. Thermal data. VII. The heats of combustion of seven amino acids. J Am Chem Soc. 1937;59:2144–9.

    Article  CAS  Google Scholar 

  43. Contineanu I, Neacsu A, Perisanu S. The standard enthalpies of formation of l-asparagine and l-glutamine. Thermochim Acta. 2010;497:96–100. https://doi.org/10.1016/j.tca.2009.08.017.

    Article  CAS  Google Scholar 

  44. Contineanu I, Neacsu A, Zgirian R, Tanasescu S, Perisanu S. The standard enthalpies of formation of proline stereoisomers. Thermochim Acta. 2012;537:31–5. https://doi.org/10.1016/j.tca.2012.02.035.

    Article  CAS  Google Scholar 

  45. Contineanu I, Marchidan DI. The enthalpies of combustion and formation of d-alanine, l-alanine, DL-alanine, and β-alanine. Rev Roum Chim. 1984;29:43–8.

    CAS  Google Scholar 

  46. Suresh CG, Vijayan M. Occurrence and geometrical features of head-to-tail sequences involving amino acids in crystal structures. Int J Pept Prot Res. 1983;22:129–43. https://doi.org/10.1111/j.1399-3011.1983.tb02077.x.

    Article  CAS  Google Scholar 

  47. Rodante F, Marrosu G, Catalani G. Thermal analysis of some a-amino acids with similar structures. Thermochim Acta. 1992;194:197–213. https://doi.org/10.1016/0040-6031(92)80018-R.

    Article  CAS  Google Scholar 

  48. D. Gheorghe. Ph.D. Thesis, Termodynamics characterization of some amino acids and their derivatives, Romanian Academy Library. 2015; 129–141.

Download references

Acknowledgements

This contribution was carried out within the research program “Chemical Thermodynamics” of the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy. Support of the EU (ERDF) and Romanian Government, for the acquisition of the research infrastructure under Project INFRANANOCHEM, No. 19/01.03.2009, is gratefully acknowledged. F.T. thanks the financial support of Executive Agency for Higher Education, Research, Development and Innovation (UEFISCDI) under Eureka Project, Contract No. 60/2017, FlavoPyraTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Neacsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheorghe, D., Neacsu, A., Contineanu, I. et al. Interplay between composition, structural dynamics and thermodynamic data in amino acid nitrates. J Therm Anal Calorim 138, 1233–1242 (2019). https://doi.org/10.1007/s10973-019-08274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08274-w

Keywords

Navigation