Skip to main content
Log in

Thermo-economic optimization of solar air heaters with arcuate-shaped obstacles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, thermo-economic optimization of single-pass SAHs (solar air heaters) with obstacles of arcuate shape has been carried out. The research is conducted in order to compare the exergy efficiency of three different types of flat plate SAHs. Also, using NSGA-II (non-dominated sorting genetic algorithm) influencing factors were optimized. The SAHs were two different arcuate obstacles (type II and type III), and the other one had no obstacles (type I). All heater types with single and double glass cover were evaluated. The results showed that the heater with double glass cover and the obstacles (type III) had the highest function in both economic and exergetic aspects. Based on the NSGA-II results, collector with flow rate, area and the outlet temperature of 0.017 kg s−1, 2.6 m2 and 78 °C, respectively, had the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A_{\text{c}}\) :

Collector area (m2)

\(C_{\text{p}}\) :

Heat capacity of fluid at constant pressure (J kg−1 K−1)

\(\dot{E}\) :

Exergy rate (W)

\(\dot{E}_{\text{dest}} ,\,\dot{I}\) :

Irreversibility (W)

\(I,G\) :

Solar radiation (W m−2)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(\dot{Q}\) :

Heat transfer rate (W)

\(\dot{Q}^{\prime }\) :

Solar heat transfer (W)

\(\dot{Q}_{0}\) :

Collector ambient heat loss (W)

\(\dot{S}_{\text{gen}}\) :

Entropy generation rate (W K−1)

T :

Temperature (K)

\(\tau \alpha\) :

Transmittance–absorbance product

\(\eta_{\text{ex}}\) :

Exergy efficiency

A,0:

Ambient

e:

Exit

In,i:

Inlet

out:

Outlet

Q:

Heat

w:

Work

References

  1. Kalogirou SA. Solar thermal collectors and applications. Prog Energy Combust Sci. 2004;30(3):231–95.

    Article  CAS  Google Scholar 

  2. Tyagi V, et al. Review on solar air heating system with and without thermal energy storage system. Renew Sustain Energy Rev. 2012;16(4):2289–303.

    Article  CAS  Google Scholar 

  3. Kalogirou SA, et al. Exergy analysis of solar thermal collectors and processes. Prog Energy Combust Sci. 2016;56:106–37.

    Article  Google Scholar 

  4. Farahat S, Sarhaddi F, Ajam H. Exergetic optimization of flat plate solar collectors. Renew Energy. 2009;34(4):1169–74.

    Article  Google Scholar 

  5. Ajam H, Farahat S, Sarhaddi F. Exergetic optimization of solar air heaters and comparison with energy analysis. Int J Thermodyn. 2005;8(4):183–90.

    Google Scholar 

  6. Torres-Reyes E, et al. A design method of flat-plate solar collectors based on minimum entropy generation. Exergy Int J. 2001;1(1):46–52.

    Article  Google Scholar 

  7. Torres-Reyes E, Ibarra-Salazar B. Thermoeconomic analysis at optimal performance of non-isothermal flat-plate solar collectors. Int J Thermodyn. 2001;4(2):103–9.

    Google Scholar 

  8. Gupta M, Kaushik S. Exergetic performance evaluation and parametric studies of solar air heater. Energy. 2008;33(11):1691–702.

    Article  Google Scholar 

  9. Kalogirou SA. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl Energy. 2004;77(4):383–405.

    Article  Google Scholar 

  10. Kalogirou S. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Sol Energy. 2009;83(1):39–48.

    Article  Google Scholar 

  11. Ibrahim AG, Rashad AM, Dincer I. Exergoeconomic analysis for cost optimization of a solar distillation system. Sol Energy. 2017;151:22–32.

    Article  Google Scholar 

  12. Hedayatizadeh M, et al. Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater. Energy. 2016;94:799–810.

    Article  Google Scholar 

  13. Jafarkazemi F, Ahmadifard E. Energetic and exergetic evaluation of flat plate solar collectors. Renew Energy. 2013;56:55–63.

    Article  Google Scholar 

  14. Rajaseenivasan T, Srinivasan S, Srithar K. Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate. Energy. 2015;88:863–73.

    Article  Google Scholar 

  15. Alta D, et al. Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl Energy. 2010;87(10):2953–73.

    Article  CAS  Google Scholar 

  16. Bejan A, Kearney D, Kreith F. Second law analysis and synthesis of solar collector systems. J Sol Energy Eng. 1981;103(1):23–8.

    Article  Google Scholar 

  17. Ahmadi P, Dincer I, Rosen MA. Multi-objective optimization of a novel solar-based multigeneration energy system. Sol Energy. 2014;108:576–91.

    Article  Google Scholar 

  18. Wang M, et al. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors. Appl Therm Eng. 2013;50(1):816–25.

    Article  CAS  Google Scholar 

  19. Boyaghchi FA, Montazerinejad H. Multi-objective optimisation of a novel combined cooling, heating and power system integrated with flat plate solar collectors using water/CuO nanofluid. Int J Exergy. 2016;21(2):202–38.

    Article  CAS  Google Scholar 

  20. Seyyedi SM, Ajam H, Farahat S. A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems. Energy. 2010;35(8):3474–82.

    Article  Google Scholar 

  21. Bejan A, Tsatsaronis G. Thermal design and optimization. Hoboken: Wiley; 1996.

    Google Scholar 

  22. Dincer I, Rosen MA. Exergy: energy, environment and sustainable development. Oxford: Newnes; 2012.

    Google Scholar 

  23. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  24. Mahmoudi SS, et al. Exergoeconomic performance comparison and optimization of single-stage absorption heat transformers. Energies. 2017;10(4):532.

    Article  Google Scholar 

  25. Kalogirou SA. Solar energy engineering: processes and systems. Cambridge: Academic Press; 2013.

    Google Scholar 

  26. Zare V, et al. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle. Energy. 2012;47(1):271–83.

    Article  Google Scholar 

  27. Jahromi SN, Vadiee A, Yaghoubi M. Exergy and economic evaluation of a commercially available PV/T collector for different climates in Iran. Energy Procedia. 2015;75:444–56.

    Article  Google Scholar 

  28. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.

    Article  Google Scholar 

  29. Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput. 1994;2(3):221–48.

    Article  Google Scholar 

  30. Cvörnjek N, Brezočnik M, Jagrič, T, Papa G. Comparison between single and multi objective genetic algorithm; 2014. https://www.researchgate.net/profile/Gregor_Papa/publication/270879094_Comparison_Between_Single_and_Multi_Objective_Genetic_Algorithm/links/552d00b70cf21acb0921191a.pdf.

  31. Deb K. Multi-objective optimization using evolutionary algorithms. New York: Wiley; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysan Gholami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, A., Ajabshirchi, Y. & Ranjbar, S.F. Thermo-economic optimization of solar air heaters with arcuate-shaped obstacles. J Therm Anal Calorim 138, 1395–1403 (2019). https://doi.org/10.1007/s10973-019-08273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08273-x

Keywords

Navigation