Skip to main content
Log in

A novel exploration of metal–organic frameworks in flame-retardant epoxy composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a series of transition metal–organic frameworks (MOFs) were prepared through self-assembly of organic bridging ligands and transition metal ions. The structure of MOFs samples was analyzed by XRD, FTIR, TG, and TEM. The influences of MOFs on flame resistance, toxicity reduction, and smoke suppression of epoxy were explored in detail. The findings presented that low addition amount of MOFs had a positive effect on decreasing the fire hazards of epoxy. Loading of 2 mass% MOFs into epoxy led to the decrease in thermal degradation rate and increase in char yields. Meanwhile, the values of peak heat release rate, total heat release, and average mass loss rate of epoxy composites were cut down effectively, in comparison with neat epoxy. Moreover, the remarkable decrease in smoke production rate, total smoke production, and CO, CO2 yield could be provided by cone calorimeter test. The char residues after cone calorimeter test were investigated by SEM and Raman spectra, and the flame-retardant mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao LP, Zheng GY, et al. Thermal performance, mechanical property and fire behavior of epoxy thermoset based on reactive phosphorus-containing epoxy monomer. J Therm Anal Calorim. 2017;127:1419–30.

    Article  CAS  Google Scholar 

  2. Yan L, Xu ZS, Wang XH, Deng N, Chu ZY. Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J Therm Anal Calorim. 2018;134:1505–19.

    Article  CAS  Google Scholar 

  3. Zhuo JL, Xie LB, Liu GD, et al. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. J Therm Anal Calorim. 2017;129:357–66.

    Article  CAS  Google Scholar 

  4. Feng YZ, He CE, Wen YF, Ye YS, et al. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater. 2018;346:140–51.

    Article  CAS  Google Scholar 

  5. Yu B, Shi YQ, Yuan BH, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A. 2015;3:8034–44.

    Article  CAS  Google Scholar 

  6. Kong QH, Wu T, Zhang JH, Wang DY. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–44.

    Article  CAS  Google Scholar 

  7. Shi YQ, Yu B, Zheng YY, Yang J, Duan ZP, Hu Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J Colloid Interface Sci. 2018;521:160–71.

    Article  CAS  Google Scholar 

  8. Feng XM, Xing WY, Song L, Hu Y. In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J Mater Chem A. 2014;2:13299–308.

    Article  CAS  Google Scholar 

  9. Zhou X, Qiu SL, et al. Hierarchical polyphosphazene@molybdenum disulfide hybrid structure for enhancing the flame retardancy and mechanical property of epoxy resins. ACS Appl Mater Interfaces. 2017;9:29147–56.

    Article  CAS  Google Scholar 

  10. Millward AR, Yaghi OM. Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc. 2005;127:17998–9.

    Article  CAS  Google Scholar 

  11. Peng Y, Li Y, Ban Y, et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science. 2014;346:1356–9.

    Article  CAS  Google Scholar 

  12. Liu J, Sun F, Zhang F, et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing. J Mater Chem. 2011;21:3775–8.

    Article  CAS  Google Scholar 

  13. Tu M, Wannapaiboon S, et al. Engineering zeolitic-imidazolate framework (ZIF) thin film devices for selective detection of volatile organic compounds. Adv Funct Mater. 2015;25:4470–9.

    Article  CAS  Google Scholar 

  14. Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem. 2012;124:3420–3.

    Article  Google Scholar 

  15. Mondloch JE, Katz MJ, et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat Mater. 2015;14:512–6.

    Article  CAS  Google Scholar 

  16. Shimizu GK, Taylor JM, Kim S. Proton conduction with metal-organic frameworks. Science. 2013;341:354–5.

    Article  CAS  Google Scholar 

  17. Wang Z, Wang B, et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces. 2015;7:20999–1004.

    Article  CAS  Google Scholar 

  18. Horcajada P, Chalati T, et al. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172–8.

    Article  CAS  Google Scholar 

  19. Rose M, et al. MOF processing by electrospinning for functional textiles. Adv Eng Mater. 2011;13:356–60.

    Article  CAS  Google Scholar 

  20. Panapitiya NP, Wijenayake SN, et al. Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer. 2014;55:2028–34.

    Article  CAS  Google Scholar 

  21. Hou YB, Hu WZ, Gui Z, Hu Y. Preparation of metal-organic frame-works and their application as flame retardants for polystyrene. Ind Eng Chem Res. 2017;56:2036–45.

    Article  CAS  Google Scholar 

  22. Zhou KQ, Gao R, Qian XD. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J Hazard Mater. 2017;338:343–55.

    Article  Google Scholar 

  23. Shi XW, Dai X, Cao Y, Li JW, Huo CG, Wang XL. Degradable poly (lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res. 2017;56:3887–94.

    Article  CAS  Google Scholar 

  24. Roy PK, Ramanan A. Toughening of epoxy resin using Zn4O (1,4-benzenedicarboxylate)3 metal-organic frameworks. RSC Adv. 2014;4:52338–45.

    Article  Google Scholar 

  25. Xu WZ, Wang XL, Wu Y, Li W, Chen CY. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J Hazard Mater. 2019;363:138–51.

    Article  CAS  Google Scholar 

  26. Zhou KQ, Liu CK, Gao R. Polyaniline: a novel bridge to reduce the fire hazards of epoxy composites. Compos A. 2018;112:432–43.

    Article  CAS  Google Scholar 

  27. Xu WZ, Wang GS, et al. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin. RSC Adv. 2018;8:2575–85.

    Article  CAS  Google Scholar 

  28. Xu XL, Shi WH, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors. Chem Mater. 2017;29:6058–65.

    Article  CAS  Google Scholar 

  29. Sun HZ, Tang BB, Wu PY. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties. ACS Appl Mater Interfaces. 2017;9:35075–85.

    Article  CAS  Google Scholar 

  30. Sheveleva AM, Anikeenko AV, et al. Probing gas adsorption in metal-organic framework ZIF-8 by EPR of embedded nitroxides. J Phys Chem C. 2017;121:19880–199886.

    Article  CAS  Google Scholar 

  31. Hu Y, Kazemian H, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun. 2011;47:12694–6.

    Article  CAS  Google Scholar 

  32. Dai X, Cao Y, Shi XW, Wang XL. Non-isothermal crystallization kinetics, thermal degradation behavior and mechanical properties of poly (lactic acid)/MOF composites prepared by melt-blending methods. RSC Adv. 2016;6:71461–71.

    Article  CAS  Google Scholar 

  33. Elangovan D, Yuzay I, et al. Poly (L-lactic acid) metal organic framework composites: optical, thermal and mechanical properties. Polym Int. 2012;61:30–7.

    Article  CAS  Google Scholar 

  34. Abid HR, Tian HY, et al. Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem Eng J. 2012;187:415–20.

    Article  CAS  Google Scholar 

  35. Wang WD, Chen XL, Gu YX, Jiao CM. Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim. 2018;131:3175–83.

    Article  CAS  Google Scholar 

  36. Zhou KQ, Tang G, Gao R, Jiang SD. In situ growth of 0D silica nanospheres on 2D molybdenum disulfide nanosheets: towards reducing fire hazards of epoxy resin. J Hazard Mater. 2018;344:1078–89.

    Article  CAS  Google Scholar 

  37. Xu BL, Xu WZ, et al. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym Adv Technol. 2018;29:1733–43.

    Article  CAS  Google Scholar 

  38. Shi YQ, Yu B, et al. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater. 2017;332:87–96.

    Article  CAS  Google Scholar 

  39. Wu N, Yang RJ. Effects of metal oxides on intumescent flame-retardant polypropylene. Polym Adv Technol. 2011;22:495–501.

    Article  CAS  Google Scholar 

  40. Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 2011;3:24–65.

    Article  CAS  Google Scholar 

  41. VanderHart AADL, Gilman JW. NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/clay nanocomposites. Macromolecules. 2000;34:3819–22.

    Article  Google Scholar 

  42. Jiao CM, Zhao L, Chen XL. Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane. J Therm Anal Calorim. 2017;127:2101–12.

    Article  CAS  Google Scholar 

  43. Zhou KQ, Liu JJ, et al. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Appl Mater Interfaces. 2015;7:6070–81.

    Article  CAS  Google Scholar 

  44. Wang SG, Gao R, Zhou KQ. The influence of cerium dioxide functionalized reduced graphene oxide on reducing fire hazards of thermoplastic polyurethane nanocomposites. J Colloid Interface Sci. 2019;536:127–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUG160607), Natural Science Fund of Hubei Province (No. 2017CFB315), Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education (KFKT03), Opening Project of Engineering Research Center of Rock-Soil Drilling and Excavation and Protection, (China University of Geosciences (Wuhan)), Ministry of Education (201801), and Scientific Research Plan Guidance Project of Hubei Province (B2017594).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yushi Lu or Keqing Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Lu, Y. & Zhou, K. A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J Therm Anal Calorim 138, 905–914 (2019). https://doi.org/10.1007/s10973-019-08267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08267-9

Keywords

Navigation