Skip to main content
Log in

Copper chromite decorated on nitrogen-doped graphene aerogel as an efficient catalyst for thermal decomposition of ammonium perchlorate particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 08 May 2023

This article has been updated

Abstract

In this study, CuCr2O4 spinel (CCO) nanoparticles decorated on three-dimensional graphene networks were synthesized using hydrothermal method followed by a calcination process. The as-prepared material was characterized by different analysis methods and used for catalytic thermal decomposition of ammonium perchlorate particles (AP). For this purpose, CuCr2O4@GA/AP composites were fabricated by solvent/non-solvent (composite processing) and simple mixing methods. The catalytic effect of the as-prepared composites was investigated by differential scanning calorimetric and thermogravimetric (TG) analysis techniques. Owing to the synergistic effect of the spinel-structured copper chromite nanoparticles, high surface area of graphene aerogel and composite processing of AP, the high-temperature decomposition of AP in the presence of 4 mass% CuCr2O4@GA nanocomposite prepared by solvent/non-solvent method was reduced from 432 to 323 °C and the heat released (∆H) from decomposition of AP was increased from 590 to 1760 J g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Zhi J, Tian-Fang W, Shu-Fen L, Feng-Qi Z, Zi-Ru L, Cui-Mei Y, Yang L, Shang-Wen L, Gang-Zhui Z. Thermal behavior of ammonium perchlorate and metal powders of different grades. J Therm Anal Calorim. 2006;85:315–20.

    Article  CAS  Google Scholar 

  2. Juibari NM, Eslami A. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;128:115–24.

    Article  CAS  Google Scholar 

  3. Chen LJ, Li GS, Li LP. CuO nanocrystals in thermal decomposition of ammonium perchlorate: stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;91(2):581–7.

    Article  CAS  Google Scholar 

  4. Singh G, Kapoor I, Dubey S, Siril PF. Preparation, characterization and catalytic activity of transition metal oxide nanocrystals. J Sci Conf Proc. 2009;1:11–7.

    Article  CAS  Google Scholar 

  5. Viswanath JV, Vijayadarshan P, Mohan T, Srinivasa RNV, Gupta A, Venkataraman A. Copper chromite as ballistic modifier in a typical solid rocket propellant composition: a novel synthetic route involved. J Energ Mat. 2018;36:69–81.

    Article  Google Scholar 

  6. Zheng S, Liu J, Wang Y, Li F, Xiao L, Ke X, Lan Z. Effect of aluminum morphology on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018;134:1823–8.

    Article  CAS  Google Scholar 

  7. Hosseini SG, Toloti SJH, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124:1243–54.

    Article  CAS  Google Scholar 

  8. Juibari NM, Tarighi S. MnCo2O4 nanoparticles with excellent catalytic activity in thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018;2018:1–10.

    Google Scholar 

  9. Ping C, Li F, Jian Z, Wei J. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2006;31:452–5.

    Article  CAS  Google Scholar 

  10. Said A. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1991;37(5):959–67.

    Article  Google Scholar 

  11. Hosseini SG, Alavi MA, Ghavi A, Toloti SJ, Agend F. Modeling of burning rate equation of ammonium perchlorate particles over Cu–Cr–O nanocomposites. J Therm Anal Calorim. 2015;119(1):99–109.

    Article  CAS  Google Scholar 

  12. Acharyya SS, Ghosh S, Adak S, Tripathi D, Bal R. Fabrication of CuCr2O4 spinel nanoparticles: a potential catalyst for the selective oxidation of cycloalkanes via activation of C sp3–H bond. Catal Commun. 2015;59:145–50.

    Article  CAS  Google Scholar 

  13. Royn S, Ghose J. Syntheses and studies on some copper chromite spinel oxide composites. Mater Res Bull. 1999;34:1179–86.

    Article  Google Scholar 

  14. Armstrong RW, Baschung B, Booth DW, Samirant M. Enhanced propellant combustion with nanoparticles. Nano Lett. 2003;3:253–5.

    Article  CAS  Google Scholar 

  15. Kawamoto AM, Pardini LC, Rezende LC. Synthesis of copper chromite catalyst. Aerosp Sci Technol. 2004;8:591–8.

    Article  CAS  Google Scholar 

  16. Rajeev R, Devi KA, Abraham A, Krishnan K, Krishnan TE, Ninan KN, Nair CGR. Thermal decomposition studies. Part 19. Kinetics and mechanism of thermal decomposition of copper ammonium chromate precursor to copper chromite catalyst and correlation of surface parameters of the catalyst with propellant burning rate. Thermochim Acta. 1995;254:235–47.

    Article  CAS  Google Scholar 

  17. Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.

    Article  CAS  Google Scholar 

  18. Yuan Y, Jiang W, Wang Y, Shen P, Li F, Li P, Zhao F, Gao H. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2014;303:354–9.

    Article  CAS  Google Scholar 

  19. Liu JX, Li FS, Jiang W, Guo XD, Liu GP. Effects of nano NiO/CNTs and Co3O4/CNTs on thermal decomposition of AP and HTPB/AP propellant. J Solid Rocket Technol. 2007;20:243–7.

    Google Scholar 

  20. Liu P, Kong JR, Xu XD, Sun FL, Liu QC. Preparation and catalytic activity of Fe2O3/CNT to thermal decomposition of ammonium perchlorate. Adv Mater Res. 2012;396:837–40.

    Google Scholar 

  21. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q, Wang X. Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale. 2010;2:988–94.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Liu Z, Qin Y, Hu W. Fabrication of Co3O4/Graphene Oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate. CrystEngComm. 2014;16:2001–8.

    Article  CAS  Google Scholar 

  23. Chen J, He S, Huang B, Zhang L, Qiao Z, Wang J, Hao Q. Highly space-confined ammonium perchlorate in three-dimensional hierarchically ordered porous carbon with improved thermal decomposition properties. Appl Surf Sci. 2018;457:508–15.

    Article  CAS  Google Scholar 

  24. Wang X, Li J, Luo Y, Huang M. A novel ammonium perchlorate/graphene aerogel nanostructured energetic composite: preparation and thermal decomposition. Sci Adv Mater. 2014;6:530–7.

    Article  CAS  Google Scholar 

  25. Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem. 2011;18:6494–7.

    Article  Google Scholar 

  26. Chen W, Yan L. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 2011;3:3132–7.

    Article  CAS  PubMed  Google Scholar 

  27. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc. 2010;40:4067–9.

    Google Scholar 

  28. Lan YF, Jin MM, Luo YJ. Preparation and characterization of graphene aerogel/Fe2O3/ammonium perchlorate nanostructured energetic composite. J Sol–Gel Sci Technol. 2015;74:161–7.

    Article  CAS  Google Scholar 

  29. Chen LJ, Li GS, Qi P, Li LP. Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals. J Therm Anal Calorim. 2008;92:765–9.

    Article  CAS  Google Scholar 

  30. Ma Z, Li F, Bai H. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants Explos Pyrotech. 2006;31:447–51.

    Article  CAS  Google Scholar 

  31. Abbas E, Nafise MJ, Hosseini SG. Fabrication of ammonium perchlorate/copper chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys. 2016;181:12–20.

    Article  Google Scholar 

  32. Hosseini SG, Ahmadi R, Ghavi A, Kashi A. Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technol. 2015;278:316–22.

    Article  CAS  Google Scholar 

  33. Wang JX, Zhang WC, Zheng ZL, Gao Y, Ma KF, Ye JH, Yang Y. Enhanced thermal decomposition properties of ammonium perchlorate through addition of 3DOM core-shell Fe2O3/Co3O4 composite. J Alloys Compd. 2017;724:720–7.

    Article  CAS  Google Scholar 

  34. Hosseini SG, Khodadadipoor Z, Mahyari M. CuO nanoparticles supported on three dimensional nitrogen-doped graphene as promising catalyst for thermal decomposition of ammonium perchlorate. Appl Organomet Chem. 2018;32:e3959.

    Article  Google Scholar 

  35. Hosseini SG, Gholami S, Mahyari M. Highly dispersed Ni–Mn bimetallic nanoparticles embedded in 3D nitrogen-doped graphene as an efficient catalyst for the thermal decomposition of ammonium perchlorate. New J Chem. 2018;42:5889–99.

    Article  CAS  Google Scholar 

  36. Acharyya SS, Ghosh S, Adak S, Sasaki T, Bal R. Facile synthesis of CuCr2O4 spinel nanoparticles: a recyclable heterogeneous catalyst for the one pot hydroxylation of benzene. Catal Sci Technol. 2014;12:4232–41.

    Article  Google Scholar 

  37. Jr Hummers, William S, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339–1339.

    Article  CAS  Google Scholar 

  38. Birks LS, Friedman H. Particle size determination from X-ray broadening. J Appl Phys. 1946;17:687–92.

    Article  CAS  Google Scholar 

  39. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  40. Eslami A, Juibari NM, Hosseini SG. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys. 2016;181:12–20.

    Article  CAS  Google Scholar 

  41. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–91.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang W, Luo Q, Duan X, Zhou Y, Pei C. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate. Mater Res Bull. 2014;50:73–8.

    Article  CAS  Google Scholar 

  43. Chen S, Zhu J, Huang H, Zeng G, Nie F, Wang X. Facile solvothermal synthesis of graphene–MnOOH nanocomposites. J Solid State Chem. 2010;183:2552–7.

    Article  CAS  Google Scholar 

  44. Kumar H, Tengli PN, Mishra VK, Tripathi P, Bhushan A, Mishra PK. The effect of reduced graphene oxide on the catalytic activity of Cu–Cr–O–TiO2 to enhance the thermal decomposition rate of ammonium perchlorate: an efficient fuel oxidizer for solid rocket motors and missiles. RSC Adv. 2017;7:36594–604.

    Article  CAS  Google Scholar 

  45. Zhao J, Liu Z, Qin Y, Hu W. Fabrication of Co3O4/graphene oxide composites using supercritical fluid and their catalytic application for the decomposition of ammonium perchlorate. CrystEngComm. 2014;16:2001–8.

    Article  CAS  Google Scholar 

  46. Lan Y, Li X, Li G, Luo Y. Sol–gel method to prepare graphene/Fe2 O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J Nanopart Res. 2015;17:395.

    Article  Google Scholar 

  47. Lan Y, Jin B, Deng J, Luo Y. Graphene/nickel aerogel: an effective catalyst for the thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:82112–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Ghorban Hosseini or Mojtaba Mahyari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.G., Khodadadipoor, Z., Mahyari, M. et al. Copper chromite decorated on nitrogen-doped graphene aerogel as an efficient catalyst for thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim 138, 963–972 (2019). https://doi.org/10.1007/s10973-019-08266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08266-w

Keywords

Navigation