Skip to main content
Log in

Automatic detection of moistures in different construction materials from thermographic images

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Moisture is a pathology that damages all type of construction materials, from materials of building envelopes to materials of bridges. Its presence can negatively affect the users’ conditions of indoor comfort. Furthermore, heating and cooling energy demand can be increased by the presence of moist materials. Infrared thermography (IRT) is a common technique in the scientific field to detect moisture areas, because of its non-destructive, non-contact nature. In addition, IRT allows an earlier moisture detection compared to the analysis using visible images. In order to optimize thermographic inspections, this paper presents one of the first methodologies for the automatic detection of moisture areas affecting the surface of construction materials. The methodology is based on the application of visible image processing techniques adapted to thermographic images through the consideration of an image conversion format, a thermal criterion and a thermal and a geometric filter. The precision, recall and F-score parameters obtained are around 83.5%, 73.5% and 72.5%, respectively, considering the false positives/negatives through a series of 12 tests made in different construction materials and ambient conditions, comparing the preliminary results with existing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Edis E, Flores-Colen I, de Brito J. Quasi-quantitative infrared thermographic detection of moisture variation in facades with adhered ceramic cladding using principal component analysis. Build Environ. 2015. https://doi.org/10.1016/j.buildenv.2015.07.027.

    Article  Google Scholar 

  2. Rosina E, Sansonetti A, Ludwig N. Moisture: the problem that any conservator faced in his professional life. J Cult Herit. 2018. https://doi.org/10.1016/j.culher.2018.04.022.

    Article  Google Scholar 

  3. Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS, Larsen LS. Associations between fungal species and water-damaged building materials. Appl Environ Microbiol. 2011. https://doi.org/10.1128/aem.02513-10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization Regional Office for Europe. WHO guidelines for indoor air quality dampness and mould. http://www.euro.who.int/__data/assets/pdf_file/0017/43325/E92645.pdf?ua=1. Accessed 30 Nov 2018.

  5. Sivasubramani SK, Niemeier RT, Reponen T, Grinshpun SA. Assessment of the aerosolization potential for fungal spores in moldy homes. Indoor Air. 2004. https://doi.org/10.1111/j.1600-0668.2004.00262.x.

    Article  PubMed  Google Scholar 

  6. Jarvis JQ, Morey PR. Allergic respiratory disease and fungal remediation in a building in a subtropical climate. Appl Occup Environ Hyg. 2001. https://doi.org/10.1080/10473220117482.

    Article  PubMed  Google Scholar 

  7. Lee TG. Health symptoms caused by molds in a courthouse. Arch Environ Health. 2003. https://doi.org/10.1080/00039896.2003.11879145.

    Article  PubMed  Google Scholar 

  8. Horner WE, Helbling A, Salvaggio JE, Lehrer SB. Fungal allergens. Clin Microbiol Rev. 1995. https://doi.org/10.1128/cmr.8.2.161.

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Alessandro F, Baldinelli G, Bianchi F, Sambuco S, Rufini A. Experimental assessment of the water content influence on thermo-acoustic performance of building insulation materials. Constr Build Mater. 2018. https://doi.org/10.1016/j.conbuildmat.2017.10.028.

    Article  Google Scholar 

  10. Kuishan L, Xu Z, Jun G. Experimental investigation of hygrothermal parameters of building materials under isothermal conditions. J Building Phys. 2008. https://doi.org/10.1177/1744259108102832.

    Article  Google Scholar 

  11. Rosina E, Ludwig N. Optimal thermographic procedures for moisture analysis in buildings materials. Proc Soc Photogr Instrum Eng. 1999. https://doi.org/10.1117/12.361015 (Internet).

    Article  Google Scholar 

  12. Rosina E. When and how reducing moisture content for the conservation of historic building. A problem solving view or monitoring approach? J Cult Herit. 2018. https://doi.org/10.1016/j.culher.2018.03.023.

    Article  Google Scholar 

  13. Johansson P, Svensson T, Ekstrand-Tobin A. Validation of critical moisture conditions for mould growth on building materials. Build Environ. 2013. https://doi.org/10.1016/j.buildenv.2013.01.012.

    Article  Google Scholar 

  14. Riveiro B, Solla M. Non-destructive techniques for the evaluation of structures and infrastructure. London: Taylor & Francis Ltd; 2016.

    Book  Google Scholar 

  15. Suchocki C, Katzer J. Terrestrial laser scanning harnessed for moisture detection in building materials—problems and limitations. Autom Constr. 2018. https://doi.org/10.1016/j.autcon.2018.06.010.

    Article  Google Scholar 

  16. Kirimtat A, Krejcar O. A review of infrared thermography for the investigation of building envelopes: advances and prospects. Energy Build. 2018. https://doi.org/10.1016/j.enbuild.2018.07.052.

    Article  Google Scholar 

  17. Garrido I, Lagüela S, Arias P. Autonomous thermography: towards the automatic detection and classification of building pathologies. In: 14th Quantitative infrared thermography conference, Berlin, Germany; 2018.

  18. Garrido I, Lagüela S, Arias P, Balado J. Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings. Energy Build. 2018. https://doi.org/10.1016/j.enbuild.2017.11.031.

    Article  Google Scholar 

  19. Ludwig N, Rosina E, Sansonetti A. Evaluation and monitoring of water diffusion into stone porous materials by means of innovative IR thermography techniques. Measurement. 2018. https://doi.org/10.1016/j.measurement.2017.09.002.

    Article  Google Scholar 

  20. Mercuri F, Zammit U, Orazi N, Paoloni S, Marinelli M, Scudieri F. Active infrared thermography applied to the investigation of art and historic artefacts. J Therm Anal Calorim. 2011. https://doi.org/10.1007/s10973-011-1450-8.

    Article  Google Scholar 

  21. Szeliski R. Computer vision: algorithms and applications. Texts in computer science. London: Springer; 2011.

    Book  Google Scholar 

  22. Yousefi B, Sfarra S, Ibarra-Castanedo C, Avdelidis NP, Maldague XPV. Thermography data fusion and nonnegative matrix factorization for the evaluation of cultural heritage objects and buildings. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7644-6.

    Article  Google Scholar 

  23. Maldague X, Marinetti S. Pulse phase infrared thermography. J Appl Phys. 1998. https://doi.org/10.1063/1.362662.

    Article  Google Scholar 

  24. Garrido I, Lagüela S, Arias P. Infrared thermography’s application to infrastructure inspections. Infrastructures. 2018. https://doi.org/10.3390/infrastructures3030035.

    Article  Google Scholar 

  25. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes F, et al. Infrared thermography for temperature measurement and non-destructive testing. Sensors. 2014. https://doi.org/10.3390/s140712305.

    Article  PubMed  Google Scholar 

  26. Kylili A, Fokaides PA, Christou P, Kalogirou SA. Infrared thermography (IRT) applications for building diagnostics: a review. Appl Energy. 2014. https://doi.org/10.1016/j.apenergy.2014.08.005.

    Article  Google Scholar 

  27. Rodríguez-Martín M, Lagüela S, González-Aguilera D, Martínez J. Thermographic test for the geometric characterization of cracks in welding using IR image rectification. Autom Constr. 2016. https://doi.org/10.1016/j.autcon.2015.10.012.

    Article  Google Scholar 

  28. Rodríguez-Martin M, Lagüela S, González-Aguilera D, Arias P. Cooling analysis of welded materials for crack detection using infrared thermography. Infrared Phys Technol. 2014. https://doi.org/10.1016/j.infrared.2014.09.025.

    Article  Google Scholar 

  29. Pahlberg T, Thurley M, Popovic D, Hagman O. Crack detection in oak flooring lamellae using ultrasound-excited thermography. Infrared Phys Technol. 2018. https://doi.org/10.1016/j.infrared.2017.11.007.

    Article  Google Scholar 

  30. Cheng C, Shen Z. Time-series based thermography on concrete block void detection. In: Construction research congress 2018 conference, New Orleans, LA; 2018.

  31. Yao Y, Sfarra S, Ibarra-Castanedo C, You R, Maldague XPV. The multi-dimensional ensemble empirical mode decomposition (MEEMD). J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-016-6082-6.

    Article  Google Scholar 

  32. Sfarra S, Perilli S, Paoletti D, Ambrosini D. Ceramics and defects. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-015-4974-5.

    Article  Google Scholar 

  33. Aparicio JHV, Arroyo LO, de León HRMP, Herrera JÁO, Arias YAR, González SA, et al. Implementation of the boundary element method for detecting defects by transient thermography on an aluminum plate. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5538-z.

    Article  Google Scholar 

  34. Mokhtari Y, Gavérina L, Ibarra-Castanedo C, Klein M, Servais P, Dumoulin J, et al. Comparative study of line scan and flying line active IR thermography operated with a 6-axis robot. In: 14th Quantitative infrared thermography conference, Berlin, Germany; 2018.

  35. Venegas P, Durana G, Zubia J, Sáez De Ocáriz I. Advanced monitoring systems for smart tooling in aeronautical industry 4.0. In: 14th Quantitative infrared thermography conference, Berlin, Germany; 2018.

  36. Lopez-Perez D, Antonino-Daviu J. Application of infrared thermography to failure detection in industrial induction motors: case stories. IEEE Trans Ind Appl. 2017. https://doi.org/10.1109/tia.2017.2655008.

    Article  Google Scholar 

  37. Gaudin D, Beauducel F, Coutant O, Delacourt C, Richon P, de Chabalier J-B, et al. Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging. J Volcanol Geotherm Res. 2016. https://doi.org/10.1016/j.jvolgeores.2016.04.007.

    Article  Google Scholar 

  38. Tanda G, Migliazzi M, Chiarabini V, Cinquetti P. Application of close-range aerial infrared thermography to detect landfill gas emissions: a case study. J Phys: Conf Ser. 2017. https://doi.org/10.1088/1742-6596/796/1/012016.

    Article  Google Scholar 

  39. Schwarz K, Heitkötter J, Heil J, Marschner B, Stumpe B. The potential of active and passive infrared thermography for identifying dynamics of soil moisture and microbial activity at high spatial and temporal resolution. Geoderma. 2018. https://doi.org/10.1016/j.geoderma.2018.04.028.

    Article  Google Scholar 

  40. Gerasimova E, Audit B, Roux S-G, Khalil A, Gileva O, Argoul F, et al. A wavelet-based method for multifractal analysis of medical signals: application to dynamic infrared thermograms of breast cancer. Cham: Springer; 2014. https://doi.org/10.1007/978-3-319-08672-9_34.

    Book  Google Scholar 

  41. Vardasca R, Vaz L, Magalhães C, Seixas A, Mendes J. Towards the diabetic foot ulcers classification with infrared thermal images. In: 14th Quantitative infrared thermography conference, Berlin, Germany; 2018.

  42. Fernández-Cuevas I, Bouzas Marins JC, Arnáiz Lastras J, Gómez Carmona PM, Piñonosa Cano S, García-Concepción MÁ, et al. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys Technol. 2015. https://doi.org/10.1016/j.infrared.2015.02.007.

    Article  Google Scholar 

  43. Drzazga Z, Binek M, Pokora I, Sadowska-Krępa E. A preliminary study on infrared thermal imaging of cross-country skiers and swimmers subjected to endurance exercise. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7311-y.

    Article  Google Scholar 

  44. Barreira E, Almeida RMSF, Delgado JMPQ. Infrared thermography for assessing moisture related phenomena in building components. Constr Build Mater. 2016. https://doi.org/10.1016/j.conbuildmat.2016.02.026.

    Article  Google Scholar 

  45. Edis E, Flores-Colen I, de Brito J. Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr Build Mater. 2014. https://doi.org/10.1016/j.conbuildmat.2013.10.085.

    Article  Google Scholar 

  46. Cadelano G, Bison P, Bortolin A, Ferrarini G, Peron F, Girotto M, Volinia M. Monitoring of historical frescoes by timed infrared imaging analysis. Opto-Electron Rev. 2015. https://doi.org/10.1515/oere-2015-0012.

    Article  Google Scholar 

  47. Georgescu MS, Ochinciuc CV, Georgescu ES, Colda I. Heritage and climate changes in Romania: the St. Nicholas Church of Densus, from degradation to restoration. Energy Proc. 2017. https://doi.org/10.1016/j.egypro.2017.09.374.

    Article  Google Scholar 

  48. ASTM C1153-10:2010. Standard practice for location of wet insulation in roofing systems using infrared imaging. West Conshohocken: ASTM International; 2010.

    Google Scholar 

  49. ASTM C1060-90:2003. Standard practice for thermographic inspection of insulation installations in envelope cavities of frame buildings. West Conshohocken: ASTM International; 2003.

    Google Scholar 

  50. Bradski G, Kaehler A. Learning OpenCV. O’Reilly. 2008. https://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf. Accessed 30 Nov 2018.

  51. Hamledari H, McCabe B, Davari S. Automated computer vision-based detection of components of under-construction indoor partitions. Autom Constr. 2017. https://doi.org/10.1016/j.autcon.2016.11.009.

    Article  Google Scholar 

  52. Mordvintsev A, Rahman A. OpenCV-Python Tutorials Documentation. 2017. https://media.readthedocs.org/pdf/opencv-python-tutroals/latest/opencv-python-tutroals.pdf. Accessed 30 Nov 2018.

  53. Image Filtering—OpenCV 2.4.13.5 documentation. 2017. https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#bilateralfilter. Accessed 30 Nov 2018.

  54. NIST/SEMATECH 1.3.5.11. Measures of skewness and kurtosis. NIST/SEMATECH e-handbook of statistical methods. 2003. https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm. Accessed 30 Nov 2018.

  55. George D, Mallery P. SPSS for windows step by step: a simple guide and reference 17.0 update. 10th ed. Boston: Pearson; 2010.

    Google Scholar 

  56. scipy.stats.skew—SciPy v0.13.0 reference guide. https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.stats.skew.html. Accessed 30 Nov 2018.

  57. scipy.stats.kurtosis—SciPy v1.1.0 reference guide. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html. Accessed 30 Nov 2018.

  58. Xu X, Xu S, Jin L, Song E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit Lett. 2011. https://doi.org/10.1016/j.patrec.2011.01.021.

    Article  Google Scholar 

  59. Yuan X, Wu L, Peng Q. An improved Otsu method using the weighted object variance for defect detection. Appl Surf Sci. 2015. https://doi.org/10.1016/j.patrec.2011.01.021.

    Article  Google Scholar 

  60. OpenCV: image thresholding. https://docs.opencv.org/3.4.0/d7/d4d/tutorial_py_thresholding.html. Accessed 30 Nov 2018.

Download references

Acknowledgements

Authors would like to thank the Ministerio de Economía y Competitividad (Gobierno de España) for the financial support given through programs for human resources (FPU16/03950) and TEC2016-76021-C2-2-R (AEI/FEDER, UE). Special thanks to the Cátedra Iberdrola VIII Centenario—University of Salamanca, and European Commission for the funding given through the program H2020-FTIPilot-2015-1 to the proposal 720661—ENGINENCY. S. Sfarra wants to thank the restorer who assisted him to construct the mosaic sample and realize the wooden samples. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 769255. This document reflects only the author’s view, and the Agency is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Garrido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, I., Lagüela, S., Sfarra, S. et al. Automatic detection of moistures in different construction materials from thermographic images. J Therm Anal Calorim 138, 1649–1668 (2019). https://doi.org/10.1007/s10973-019-08264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08264-y

Keywords

Navigation