Skip to main content
Log in

Thermal destruction of coprecipitated hydroxides of indium and dysprosium

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal destruction of indium and dysprosium hydroxides coprecipitated from solutions of their nitrate and chloride salts with ammonia was investigated by DTA/TG, XRD and MS methods. The features of these processes were revealed in solutions of different nature. It is shown that the method of thermal decomposition of mixed indium and dysprosium hydroxides coprecipitated from the solution of their chloride salts is environmentally appropriate and economically viable. The size of the coprecipitated hydroxide particles of indium oxide produced through thermal destruction at up to 500 °C (13 nm) allows us to recommend this method for production of nanodispersed mixed oxides of indium and dysprosium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kment S, Hubicka Z, Krysa J, Sekora D, Zlamal M, Olejnicek J, Cada M, Ksirova P, Remes Z, Schmuki P, Schubert E, Zboril R. On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Appl Catal B Environ. 2015;165:344–50.

    Article  CAS  Google Scholar 

  2. Sirghi L. Plasma synthesis of photocatalytic TiOx thin films. Plasma Sources Sci Technol. 2016;25(3):033003.

    Article  Google Scholar 

  3. Rodriguez JA, Fernandez MG. Synthesis, properties and applications of oxide nanoparticles. New Jersey: Whiley; 2007.

    Book  Google Scholar 

  4. Fernandez MG, Martinzes AA, Hanson JC, Rodriguez JA. Chem Rev. 2004;104:4063–104.

    Article  Google Scholar 

  5. Tietz H. Technical Ceramics. Düsseldorf: VDI Verlag; 1994.

    Google Scholar 

  6. Ming-Wei Wu, Pang-Hsin Lai, Chia-Hong Hong, Fang-Cheng Chou. The sintering behavior, microstructure, and electrical properties of gallium-doped zinc oxide ceramic targets. J Eur Ceram Soc. 2014;34(15):3715–22.

    Article  Google Scholar 

  7. Ikesue A, Kinoshita T, Kamata K, Yoshida K. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J Am Ceram Soc. 1995;78(4):1033–40.

    Article  CAS  Google Scholar 

  8. Yagi H, Yanagitani T, Numazawa T, Ueda K. The physical properties of transparent Y3Al5O12 elastic modulus at high temperature and thermal conductivity at low temperature. Ceram Int. 2007;33(5):711–4.

    Article  CAS  Google Scholar 

  9. Merrilea Joyce Mayo. Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev. 1996;41(3):85–115.

    Article  Google Scholar 

  10. Zhukov I, Vorozhtsov S, Promakhov V, Bondarchuk I, Zhukov A, Vorozhtsov A. Plasma-chemical method for producing metal oxide powders and their application. J Phys: Conf Ser. 2015;652:012027.

    Google Scholar 

  11. Kuzjukevics A, Linderoth S, Grabis J. Characterization of yttria-doped zirconia powders produced by plasma-chemical method. Solid State Ion. 1996;92(3–4):253–60.

    Article  CAS  Google Scholar 

  12. Nomoev AV, Bardakhanov SP, Schreiber M, Bazarova DZ, Baldanov BB, Romanov NA. Synthesis, characterization, and mechanism of formation of Janus-like nanoparticles of tantalum silicide-silicon (TaSi2/Si). Nanomaterials. 2015;5(1):26–35.

    Article  CAS  Google Scholar 

  13. D’Amato R, Falconieri M, Gagliardi S, Popovici E, Serra E, Terranova G, Borsella E. Synthesis of ceramic nanoparticles by laser pyrolysis: from research to applications. J Anal App Pyrolysis. 2013;104:461–9.

    Article  Google Scholar 

  14. Borsella E, Botti S, Fantoni R, Alexandrescu R. Composite Si/C/N powder production by laser induced gas phase reactions. J Mater Res. 1992;7(8):2257–68.

    Article  CAS  Google Scholar 

  15. Kotov YA, Osipov VV, Ivanov MG, et al. Properties of YSZ and CeGdO nanopowders prepared by target evaporation with a pulse-repetitive CO2-laser. Rev Adv Mater Sci. 2003;5:171–7.

    CAS  Google Scholar 

  16. Gulyaev I. Experience in plasma production of hollow ceramic microspheres with required wall thickness. Ceram Int. 2015;41(1):101–7.

    Article  CAS  Google Scholar 

  17. Szépvölgyi J, Károly Z. Preparation of hollow alumina microspheres by RF thermal plasma. Key Eng Mater. 2004;264–268:101–4.

    Article  Google Scholar 

  18. Ghyngazov SA, Frangulyan TS. Impact of pressure in static and dynamic pressing of zirconia ultradisperse powders on compact density and compaction efficiency during sintering. Ceram Int. 2017;43(18):16555–9.

    Article  CAS  Google Scholar 

  19. Mironov V, Stankevich P, Beljaeva I, Glushenkov V. Static-dynamic powder material compaction methods. Eng Rural Dev 2016;15:1128–32.

    Google Scholar 

  20. Boltachev GSh, Nagayev KA, Paranin SN, Spirin AV, Volkov NB. Magnetic pulsed compaction of nanosized powders. New York: Nova Science; 2010.

    Google Scholar 

  21. Khasanov OL, Pokholkov YuP, Ivanov YuF, Ljubimova LL, Makeev AA. Effect of ultrasonic compaction of nanopowder on structure and fracture character of zirconia nanoceramics. Fract Mech Ceram. 2002;13:503–12.

    Article  CAS  Google Scholar 

  22. Lukianova OA, Novikov VYu, Parkhomenko AA, Sirota VV, Krasilnikov VV. Microstructure of spark plasma-sintered silicon nitride ceramics. Nano Res Lett. 2017;12:293.

    Article  CAS  Google Scholar 

  23. Surzhikov AP, Franguljyan TS, Ghyngazov SA, Vasiljev IP, Chemyavsky AV. Sintering of zirconia ceramics by intense high-energy electron beam. Ceram Int. 2016;42(12):13888–92.

    Article  CAS  Google Scholar 

  24. Vayos G Karayannis. Microwave sintering of ceramic materials. In: IOP conference series: mater science and engineering. 2016;161(1):012068.

  25. Anand K, Thangaraj R, Kohli N, Singh RC. Structural, optical and ethanol gas sensing properties of In2O3 and Dy3+: In2O3 nanoparticles. 58th DAE Solid State Physics Symposium (DAE SSPS-2013). 2014. https://doi.org/10.1063/1.4872645.

  26. Trusova EA, Khrushcheva AA, Vokhmintcev KV. Sol-gel synthesis and phase composition of ultrafine ceria-doped zirconia powders for functional ceramics. J Eur Ceram Soc. 2012;32(9):1977–81.

    Article  CAS  Google Scholar 

  27. Egorov YP, Malinovskaya TD, Naiden EP, Sachkov VI, Sachkova EI. Chem Sustain Dev. 2002;10:679–85.

    Google Scholar 

  28. Inoue K, Tanaka N, Tanaka T. Lanthanoid-containing oxide target. Patent US, No. 8,038,911 B2, 2011.

  29. Inoue K, Yano K, Kasami M. Sputtering target, oxide semiconductor film and semiconductor device. Patent US, No. 8,333,913 B2, 2012.

  30. Wei Ruichao, Huang Shenshi, Huang Que, Ouyang Dongxu, Chen Qinpei, Yuen Richard, Wang Jian. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018;134(3):1471–80.

    Article  CAS  Google Scholar 

  31. Souri D, Shahmoradi Y. Calorimetric analysis of non-crystalline TeO2-V2O5-Sb2O3. J Therm Anal Calorim. 2017;129(1):601–7.

    Article  CAS  Google Scholar 

  32. Brazolin GF, SilvaL CCS, Silva S, Silva RAG. Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J Therm Anal Calorim. 2018;134(3):1405–12.

    Article  CAS  Google Scholar 

  33. Hinatsu Yukio, Doi Yoshihiro. Synthesis of new fluorite-related rare earth oxides LnLn2′MO7 (Ln, Ln′ = rare earths; M = Nb, Sb, Ta), their structures and magnetic properties by calorimetry measurements. J Therm Anal Calorim. 2017;127(1):749–54.

    Article  CAS  Google Scholar 

  34. Brinker CJ, Scherer GW. Sol-Gel Science. The physics and chemistry of Sol-Gel processing. Academic Press, INC; Am Imprint of Elsevier; 1990. 908 p.

Download references

Acknowledgements

The results were obtained within the framework of the state task of the Ministry of Education and Science of the Russian Federation, Project No. 16.3037.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Ghyngazov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinovskaya, T., Ghyngazov, S. & Zhek, V. Thermal destruction of coprecipitated hydroxides of indium and dysprosium. J Therm Anal Calorim 138, 1871–1877 (2019). https://doi.org/10.1007/s10973-019-08261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08261-1

Keywords

Navigation