Skip to main content
Log in

Non-isothermal crystallization kinetics of continuous glass fiber-reinforced poly(ether ether ketone) composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Current studies on crystallization kinetics for glass fiber-reinforced poly(ether ether ketone) mainly focused on short glass fiber-reinforced composites and their isothermal crystallization. It is worth noting that continuous glass fiber-reinforced poly(ether ether ketone) composite (CGF/PEEK) possesses relatively higher mechanical performance than short fiber-reinforced PEEK under high temperature. Here, for the first time, we investigate the non-isothermal crystallization kinetics and melting behavior of CGF/PEEK by differential scanning calorimetry at four different cooling rates. By evaluating the crystallite size of CGF/PEEK using X-ray diffraction, it is found that with the decreasing cooling rate, the crystallite size distribution evolves more uniform, and the size of crystallites enlarges. Besides, by systematical analysis, we find the modified Avrami equation can well describe crystallization behavior of the CGF/PEEK. The higher Avrami value of CGF/PEEK than pure PEEK indicates that CGF could introduce a more complex geometry effect on the crystallization. The addition of CGF greatly reduces the absolute value of crystallization activation energy of PEEK, suggesting that CGF can reduce the nucleation energy barrier. The obtained results illustrate that CGF can accelerate the nucleation rate due to heterogeneous nucleation while reduce the growth rate due to retarded polymer chain mobility. And the cooling conditions can influence crystal growth and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Audoit J, Rivière L, Dandurand J, Lonjon A, Dantras E, Lacabanne C. Thermal, mechanical and dielectric behaviour of poly(aryl ether ketone) with low melting temperature. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7292-x.

    Article  Google Scholar 

  2. Li EZ, Guo WL, Wang HD, Xu BS, Liu XT. Research on tribological behavior of PEEK and glass fiber reinforced PEEK composite. Phys Procedia. 2013;50:453–60. https://doi.org/10.1016/j.phpro.2013.11.071.

    Article  CAS  Google Scholar 

  3. Yang Y. Sensitivity of nanoindentation strain rate in poly(ester-ester-ketone) using atomic force microscopy. Polym Test. 2016;53:85–8. https://doi.org/10.1016/j.polymertesting.2016.05.013.

    Article  CAS  Google Scholar 

  4. Dwivedi M, Alam S, Verma GL. Effect of nano-barium titanate on thermal stability of ferrite filled poly-ether-ether-ketone (PEEK) composites. J Therm Anal Calorim. 2004;77(3):947–55.

    Article  CAS  Google Scholar 

  5. Chen F, Ou H, Gatea S, Long H. Hot tensile fracture characteristics and constitutive modelling of polyether-ether-ketone (PEEK). Polym Test. 2017;63:168–79. https://doi.org/10.1016/j.polymertesting.2017.07.032.

    Article  CAS  Google Scholar 

  6. Karsli NG, Demirkol S, Yilmaz T. Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Compos B. 2016;88:253–63. https://doi.org/10.1016/j.compositesb.2015.11.013.

    Article  CAS  Google Scholar 

  7. Mileva D, Tranchida D, Gahleitner M. Designing polymer crystallinity: an industrial perspective. Polym Cryst. 2018;1:e10009.

    Google Scholar 

  8. Sattari M, Molazemhosseini A, Naimi-Jamal MR, Khavandi A. Nonisothermal crystallization behavior and mechanical properties of PEEK/SCF/nano-SiO2 composites. Mater Chem Phys. 2014;147(3):942–53. https://doi.org/10.1016/j.matchemphys.2014.06.041.

    Article  CAS  Google Scholar 

  9. Wang Y, Wang Y, Lin Q, Cao W, Liu C, Shen C. Crystallization behavior of partially melted poly(ether ether ketone). J Therm Anal Calorim. 2017;129(2):1021–8. https://doi.org/10.1007/s10973-017-6229-0.

    Article  CAS  Google Scholar 

  10. Regis M, Zanetti M, Pressacco M, Bracco P. Opposite role of different carbon fiber reinforcements on the non-isothermal crystallization behavior of poly(etheretherketone). Mater Chem Phys. 2016;179:223–31. https://doi.org/10.1016/j.matchemphys.2016.05.034.

    Article  CAS  Google Scholar 

  11. Tierney JJ, Gillespie JW Jr. Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates. Compos A. 2004;35(5):547–58. https://doi.org/10.1016/j.compositesa.2003.12.004.

    Article  CAS  Google Scholar 

  12. Mishra AK, Schultz JM. Effect of flow rate and temperature on crystallization kinetics, crystallinity index, and elastic modulus of PEEK. J Appl Polym Sci. 1989;38(4):655–66.

    Article  CAS  Google Scholar 

  13. Bas C, Battesti P, Albérola ND. Crystallization and melting behaviors of poly(aryletheretherketone) (PEEK) on origin of double melting peaks. J Appl Polym Sci. 1994;53(13):1745–57.

    Article  CAS  Google Scholar 

  14. Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone). Polymer. 1986;27(8):1183–92.

    Article  CAS  Google Scholar 

  15. Furushima Y, Toda A, Rousseaux V, Bailly C, Zhuravlev E, Schick C. Quantitative understanding of two distinct melting kinetics of an isothermally crystallized poly(ether ether ketone). Polymer. 2016;99:97–104. https://doi.org/10.1016/j.polymer.2016.07.005.

    Article  CAS  Google Scholar 

  16. D’Amore A, Kenny JM, Nicolais L, Tucci V. Dynamic-mechanical and dielectric characterization of PEEK crystallization. Polym Eng Sci. 2010;30(5):314–20.

    Article  Google Scholar 

  17. Jin L, Ball J, Bremner T, Sue H-J. Crystallization behavior and morphological characterization of poly(ether ether ketone). Polymer. 2014;55(20):5255–65. https://doi.org/10.1016/j.polymer.2014.08.045.

    Article  CAS  Google Scholar 

  18. Gardner KCH, Hsiao BS, Matheson RR, Wood BA. Structure, crystallization and morphology of poly(aryl ether ketone ketone). Polymer. 1992;33(12):2483–95.

    Article  CAS  Google Scholar 

  19. Velisaris CN, Seferis JC. Crystallization kinetics of polyetheretherketone (peek) matrices. Polym Eng Sci. 2010;26(22):1574–81.

    Article  Google Scholar 

  20. Cebe P. Non-isothermal crystallization of poly(etheretherketone) aromatic polymer composite. Polym Compos. 1988;9(4):271–9.

    Article  CAS  Google Scholar 

  21. Lorenzo MLD, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24(6):917–50.

    Article  Google Scholar 

  22. Bessard E, De Almeida O, Bernhart G. Unified isothermal and non-isothermal modelling of neat PEEK crystallization. J Therm Anal Calorim. 2013;115(2):1669–78. https://doi.org/10.1007/s10973-013-3308-8.

    Article  CAS  Google Scholar 

  23. Tan S, Su A, Luo J, Zhou E. Crystallization kinetics of poly(ether ether ketone) (PEEK) from its metastable melt. Polymer. 1999;40(5):1223–31.

    Article  CAS  Google Scholar 

  24. Tardif X, Pignon B, Boyard N, Schmelzer JWP, Sobotka V, Delaunay D, et al. Experimental study of crystallization of PolyEtherEtherKetone (PEEK) over a large temperature range using a nano-calorimeter. Polym Test. 2014;36:10–9. https://doi.org/10.1016/j.polymertesting.2014.03.013.

    Article  CAS  Google Scholar 

  25. Nazari B, Rhoades AM, Schaake RP, Colby RH. Flow-induced crystallization of PEEK: isothermal crystallization kinetics and lifetime of flow-induced precursors during isothermal annealing. ACS Macro Lett. 2016;5(7):849–53. https://doi.org/10.1021/acsmacrolett.6b00326.

    Article  CAS  Google Scholar 

  26. Kuo MC, Kuo JS, Yang MH, Huang JC. On the crystallization behavior of the nano-silica filled PEEK composites. Mater Chem Phys. 2010;123(2–3):471–80. https://doi.org/10.1016/j.matchemphys.2010.04.043.

    Article  CAS  Google Scholar 

  27. Chen B, Berretta S, Evans K, Smith K, Ghita O. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering. Appl Surf Sci. 2018;428:1018–28. https://doi.org/10.1016/j.apsusc.2017.09.226.

    Article  CAS  Google Scholar 

  28. Joshi SC, Lam YC. Integrated approach for modelling cure and crystallization kinetics of different polymers in 3D pultrusion simulation. J Mater Process Technol. 2006;174(1):178–82. https://doi.org/10.1016/j.jmatprotec.2006.01.003.

    Article  CAS  Google Scholar 

  29. Mishra AK, Schultz JM. Kinetics of strain-induced crystallization during injection molding of short fiber composites of poly(ether ether ketone). Polym Compos. 2010;12(3):169–78.

    Article  Google Scholar 

  30. Zhang Z, Zeng H. Nucleation and crystal growth of PEEK on carbon fiber. J Appl Polym Sci. 1993;48(11):1987–95.

    Article  CAS  Google Scholar 

  31. Chu XX, Wu ZX, Huang RJ, Zhou Y, Li LF. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics. 2010;50(2):84–8. https://doi.org/10.1016/j.cryogenics.2009.12.003.

    Article  CAS  Google Scholar 

  32. Patel P, Hull TR, Lyon RE, Stoliarov SI, Walters RN, Crowley S, et al. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym Degrad Stab. 2011;96(1):12–22. https://doi.org/10.1016/j.polymdegradstab.2010.11.009.

    Article  CAS  Google Scholar 

  33. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  34. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). J Appl Polym Sci. 1997;37(3):568–75.

    CAS  Google Scholar 

  35. Yong L, Wu Q, Fei Y, Xu Y. Preparation and properties of recycled HDPE/natural fiber composites. Compos A. 2007;38(7):1664–74.

    Article  Google Scholar 

  36. Kuo MC, Huang JC, Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys. 2006;99(2–3):258–68. https://doi.org/10.1016/j.matchemphys.2005.10.021.

    Article  CAS  Google Scholar 

  37. Hsiao BS, Gardner KCH, Wu DQ, Chu B. Time-resolved X-ray study of poly(aryl ether ether ketone) crystallization and melting behaviour: 2. Melting. Polymer. 1993;34(19):3996–4003.

    Article  CAS  Google Scholar 

  38. Fougnies C, Damman P, Dosière M, Koch MHJ. Time-resolved SAXS, WAXS, and DSC study of melting of poly(aryl ether ether ketone) (PEEK) annealed from the amorphous state. Macromolecules. 1997;30(5):1385–91.

    Article  CAS  Google Scholar 

  39. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2015;23(13):771–5.

    Article  Google Scholar 

  40. Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18(2):353–8.

    Article  CAS  Google Scholar 

  41. Tranchida D, Gloger D, Gahleitner M. A critical approach to the Kissinger analysis for studying non-isothermal crystallization of polymers. J Therm Anal Calorim. 2017;129(2):1057–64.

    Article  CAS  Google Scholar 

  42. Run M, Song H, Yao C, Wang Y. Crystal morphology and nonisothermal crystallization kinetics of short carbon fiber/poly(trimethylene terephthalate) composites. J Appl Polym Sci. 2007;106(2):868–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports by Natural Science Foundation of Hunan Province [2017JJ3031] and National Natural Science Foundation of China [No. 11602081 and No. 51875188].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, X., Wei, K. et al. Non-isothermal crystallization kinetics of continuous glass fiber-reinforced poly(ether ether ketone) composites. J Therm Anal Calorim 138, 369–378 (2019). https://doi.org/10.1007/s10973-019-08245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08245-1

Keywords

Navigation