A review on the application of differential scanning calorimetry (DSC) to petroleum products

Characterization and kinetic study

Abstract

Differential scanning calorimetry (DSC) can be used to obtain a variety of thermodynamic or kinetic data of petroleum products. The application of DSC to petroleum fluids includes characterization of crude oils, studying bulk and confined space phase behavior of hydrocarbons, and evaluating the glass transition in crude oils. In addition, the kinetic data of the pyrolysis, combustion, and oxidation of crude oils can be obtained using DSC. In this work, a comprehensive review of the application of DSC to petroleum-based products is provided that integrates different approaches in the literature in order to provide a constructive platform for future studies. Also, the limitations of the method are elaborated in detail, and recommendations are provided to appropriately optimize the accuracy and applicability of DSC to study petroleum products. The impact of different operating parameters in using DSC including the thermal scanning rate, pressure, modulating temperature program, and analysis method is systematically discussed. Also, the effect of neglecting thermal radiation in DSC experiments is highlighted to ensure that future studies consider this important phenomenon once analyzing the raw data. As well, the advantage of coupling DSC with other analytical techniques is carefully reviewed to underline that precious information that can be obtained once DSC is integrated with other methods. This comprehensive review expresses that DSC has different themes of applications to the research and development in petroleum industry. Due to its simplicity, precious and rapid data collection features, DSC is one of the primary methods for characterizing petroleum fluids. Yet, further advancements both in the equipment design and in data analysis is urged to improve the applicability of DSC to crude oils and their fractions.

This is a preview of subscription content, access via your institution.

Fig. 1

(Reprinted from [2], Copyright (2018), with permission from John Wiley and Sons)

Fig. 2

(Reprinted from [43], Copyright (2008), with permission from Elsevier)

Fig. 3

(Reprinted from [49], Copyright (2015), with permission from Elsevier)

Fig. 4

(Reprinted from [54], Copyright (2016), with permission from American Chemical Society)

Fig. 5

(Reprinted from [67], Copyright (2016), with permission from Elsevier)

Fig. 6

(Formatted with permission from [70], Copyright (2004) Springer Nature)

Fig. 7

(Reprinted from [99], Copyright (2018), with permission from Elsevier)

Fig. 8

(Data points obtained from [158])

References

  1. 1.

    Giavarini C, Pochetti F. Characterization of petroleum products by DSC analysis. J Therm Anal. 1973;5:83–94.

    CAS  Google Scholar 

  2. 2.

    Harvey J-P, Saadatkhah N, Dumont-Vandewinkel G, Ackermann SLG, Patience GS. Experimental methods in chemical engineering: differential scanning calorimetry—DSC. Can J Chem Eng. 2018;96:2518–25.

    CAS  Google Scholar 

  3. 3.

    Mothé MG, Perin M, Mothé CG. Comparative thermal study of heavy crude oils by DSC. Pet Sci Technol. 2016;34:314–20.

    Google Scholar 

  4. 4.

    Kök MV, Pamir MR. Pyrolysis and combustion studies of fossil fuels by thermal analysis methods. J Anal Appl Pyrolysis. 1995;35:145–56.

    Google Scholar 

  5. 5.

    Kök M. Thermal analysis applications in fossil fuel science. Literature survey. J Therm Anal Calorim. 2002;68:1061–77.

    Google Scholar 

  6. 6.

    Kök M. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.

    Google Scholar 

  7. 7.

    Wesołowski M. Thermal analysis of petroleum products. Thermochim Acta. 1981;46:21–45.

    Google Scholar 

  8. 8.

    Rustschev DD. Application of thermal analysis for investigating liquid fuels, petroleum- and coke-chemical products. Thermochim Acta. 1990;168:261–71.

    Google Scholar 

  9. 9.

    Masson J-F, Bundalo-Perc S. Calculation of smoothing factors for the comparison of DSC results. J Therm Anal Calorim. 2007;90:639–43.

    CAS  Google Scholar 

  10. 10.

    Ahmadi Khoshooei M, Fazlollahi F, Maham Y, Hassan A, Pereira-Almao P. A review on the application of differential scanning calorimetry (DSC) to petroleum products. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08022-0.

    Article  Google Scholar 

  11. 11.

    Duyck C, Miekeley N, Porto da Silveira CL, Szatmari P. Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochim Acta Part B At Spectrosc. 2002;57:1979–90.

    Google Scholar 

  12. 12.

    Espinat D, Ravey JC, Guille V, Lambard J, Zemb T, Cotton JP. Colloidal macrostructure of crude oil studied by neutron and X-ray small angle scattering techniques. Le J Phys IV. 1993;3:C8–181.

    Google Scholar 

  13. 13.

    Subramanian S, Simon S, Sjöblom J. Asphaltene precipitation models: a review. J Dispers Sci Technol. 2016;37:1027–49.

    CAS  Google Scholar 

  14. 14.

    Kutcherov V, Lundin A, Ross RG, Anisimov M, Chernoutsan A. Glass transition in viscous crude oils under pressure. Int J Thermophys. 1994;15:165–76.

    CAS  Google Scholar 

  15. 15.

    Létoffé JM, Claudy P, Garcin M, Volle JL. Evaluation of crystallized fractions of crude oils by differential scanning calorimetry: correlation with gas chromatography. Fuel. 1995;74:92–5.

    Google Scholar 

  16. 16.

    Kutcherov V, Chernoutsan A, Brazhkin V. Crystallization and glass transition in crude oils and their fractions at atmospheric and high pressures. J Mol Liq. 2017;241:428–34.

    CAS  Google Scholar 

  17. 17.

    Kutcherov V, Chernoutsan A. Crystallization and glass transition in crude oils and their fractions at high pressure. Int J Thermophys. 2006;27:474–85.

    CAS  Google Scholar 

  18. 18.

    Claudy P, Létoffé J-M, Chagué B, Orrit J. Crude oils and their distillates: characterization by differential scanning calorimetry. Fuel. 1988;67:58–61.

    CAS  Google Scholar 

  19. 19.

    Baltzer Hansen A, Larsen E, Batsberg Pedersen W, Nielsen AB, Roenningsen HP. Wax precipitation from North Sea crude oils. 3. Precipitation and dissolution of wax studied by differential scanning calorimetry. Energy Fuels. 1991;5:914–23.

    CAS  Google Scholar 

  20. 20.

    Masson J-F, Polomark GM. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta. 2001;374:105–14.

    CAS  Google Scholar 

  21. 21.

    Masson J-F, Polomark GM, Bundalo-Perc S, Collins P. Melting and glass transitions in paraffinic and naphthenic oils. Thermochim Acta. 2006;440:132–40.

    CAS  Google Scholar 

  22. 22.

    Chambrion P, Bertau R, Ehrburger P. Characterization of bitumen by differential scanning calorimetry. Fuel. 1996;75:144–8.

    CAS  Google Scholar 

  23. 23.

    Frolov IN, Firsin AA. Role of paraffinic hydrocarbons in the formation of the dispersed structure of petroleum asphalt. Chem Technol Fuels Oils. 2016;52:600–5.

    CAS  Google Scholar 

  24. 24.

    Merusi F, Filippi S, Polacco G. Effect of synthetic and functionalized waxes on bituminous binders: from the glassy state to the intermediate viscoelastic domain. Constr Build Mater. 2017;136:541–55.

    CAS  Google Scholar 

  25. 25.

    Jackle J. Models of the glass transition. Rep Prog Phys. 1986;49:171.

    Google Scholar 

  26. 26.

    Kriz P, Stastna J, Zanzotto L. Glass transition and phase stability in asphalt binders. Road Mater Pavement Des. 2008;9:37–65.

    Google Scholar 

  27. 27.

    Yasar M, Akmaz S, Ali Gurkaynak M. Investigation of glass transition temperatures of Turkish asphaltenes. Fuel. 2007;86:1737–48.

    CAS  Google Scholar 

  28. 28.

    Claudy P, Létoffé J-M, Chagué B, Orrit J. Crude oils and their distillates: characterization by differential scanning calorimetry. Fuel. 1988;67:58–61.

    CAS  Google Scholar 

  29. 29.

    Noel F. Thermal analysis of lubricating oils. Thermochim Acta. 1972;4:377–92.

    CAS  Google Scholar 

  30. 30.

    Gill PS, Sauerbrunn SR, Reading M. Modulated differential scanning calorimetry. J Therm Anal. 1993;40:931–9.

    CAS  Google Scholar 

  31. 31.

    Reading M, Elliott D, Hill VL. A new approach to the calorimetric investigation of physical and chemical transitions. J Therm Anal. 1993;40:949–55.

    CAS  Google Scholar 

  32. 32.

    Boller A, Schick C, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta. 1995;266:97–111.

    CAS  Google Scholar 

  33. 33.

    Jiménez-Mateos JM, Quintero LC, Rial C. Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry. Fuel. 1996;75:1691–700.

    Google Scholar 

  34. 34.

    Bair H. Glass transition measurements by DSC. In: Seyler RJ, editor. Assignment of the glass transition. West Conshohocken: ASTM International; 1994. p. 50–74.

    Google Scholar 

  35. 35.

    Flocke HA. Ein Beitrag zum mechanischen Relaxationsverhalten von Polyäthylen, Polypropylen, Gemischen aus diesen und Mischpolymerisaten aus Propylen und äthylen. Kolloid-Zeitschrift und Zeitschrift für Polym. 1962;180:118–26.

    Google Scholar 

  36. 36.

    Kucherov VG, Chernoutsan AI. Reciprocal influence of crystallization and vitrification processes in complex hydrocarbon systems. Chem Technol Fuels Oils. 2006;42:206–10.

    CAS  Google Scholar 

  37. 37.

    Kucherov VG, Chernoutsan AI. Characteristics of crystallization and the glass transition of Kumkol’ crude oil at high pressures. Chem Technol Fuels Oils. 2001;37:401–6.

    CAS  Google Scholar 

  38. 38.

    Cantor AS. Glass transition temperatures of hydrocarbon blends: adhesives measured by differential scanning calorimetry and dynamic mechanical analysis. J Appl Polym Sci. 2000;77:826–32.

    CAS  Google Scholar 

  39. 39.

    Levin M, Karlsson C. The effect of molecular composition of naphthenic mineral oil on the glass transition temperature. Thermochim Acta. 2010;499:171–3.

    CAS  Google Scholar 

  40. 40.

    Kutcherov V. Glass transition in crude oils under pressure. Int J Thermophys. 2006;27:467–73.

    CAS  Google Scholar 

  41. 41.

    Shaw JM, Zou X. Phase behavior of heavy oils. In: Mullins OC, Sheu EY, Hammami A, Marshall AG, editors. Asphaltenes, heavy oils, and petroleomics. New York: Springer; 2007. p. 489–510.

    Google Scholar 

  42. 42.

    Plato C, Glasgow AR. Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. Anal Chem. 1969;41:330–6.

    CAS  PubMed  Google Scholar 

  43. 43.

    Fulem M, Becerra M, Hasan MDA, Zhao B, Shaw JM. Phase behaviour of Maya crude oil based on calorimetry and rheometry. Fluid Phase Equilib. 2008;272:32–41.

    CAS  Google Scholar 

  44. 44.

    Bazyleva A, Fulem M, Becerra M, Zhao B, Shaw JM. Phase behavior of Athabasca Bitumen. J Chem Eng Data. 2011;56:3242–53.

    CAS  Google Scholar 

  45. 45.

    Laštovka V, Fulem M, Becerra M, Shaw JM. A similarity variable for estimating the heat capacity of solid organic compounds: Part II. Application: heat capacity calculation for ill-defined organic solids. Fluid Phase Equilib. 2008;268:134–41.

    Google Scholar 

  46. 46.

    Bagheri SR, Bazyleva A, Gray MR, McCaffrey WC, Shaw JM. Observation of liquid crystals in heavy petroleum fractions. Energy Fuels. 2010;24:4327–32.

    CAS  Google Scholar 

  47. 47.

    Abivin P, Taylor SD, Freed D. Thermal behavior and viscoelasticity of heavy oils. Energy Fuels. 2012;26:3448–61.

    CAS  Google Scholar 

  48. 48.

    Bazyleva A, Becerra M, Stratiychuk-Dear D, Shaw JM. Phase behavior of Safaniya vacuum residue. Fluid Phase Equilib. 2014;380:28–38.

    CAS  Google Scholar 

  49. 49.

    Aguiar JIS, Mansur CRE. Study of the interaction between asphaltenes and resins by microcalorimetry and ultraviolet–visible spectroscopy. Fuel. 2015;140:462–9.

    CAS  Google Scholar 

  50. 50.

    Aguiar JIS, Garreto MSE, González G, Lucas EF, Mansur CRE. Microcalorimetry as a new technique for experimental study of solubility parameters of crude oil and asphaltenes. Energy Fuels. 2014;28:409–16.

    CAS  Google Scholar 

  51. 51.

    Luo S, Lutkenhaus JL, Nasrabadi H. Experimental study of onfinement effect on hydrocarbon phase behavior in nano-scale porous media using differential scanning calorimetry. In: SPE Annual technical conference exhibition. Huoston, Texas: Society of Petroleum Engineers; September 2015; p. 1–16.

  52. 52.

    Luo S, Lutkenhaus JL, Nasrabadi H. Use of differential scanning calorimetry to study phase behavior of hydrocarbon mixtures in nano-scale porous media. J Pet Sci Eng. 2018;163:731–8.

    CAS  Google Scholar 

  53. 53.

    Luo S, Nasrabadi H, Lutkenhaus JL. Effect of confinement on the bubble points of hydrocarbons in nanoporous media. AIChE J. 2016;62:1772–80.

    CAS  Google Scholar 

  54. 54.

    Luo S, Lutkenhaus JL, Nasrabadi H. Confinement-induced supercriticality and phase equilibria of hydrocarbons in nanopores. Langmuir. 2016;32:11506–13.

    CAS  PubMed  Google Scholar 

  55. 55.

    Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92:1026–31.

    CAS  Google Scholar 

  56. 56.

    Castro LV, Vazquez F. Fractionation and characterization of Mexican crude oils. Energy Fuels. 2009;23:1603–9.

    CAS  Google Scholar 

  57. 57.

    Gobrecht H, Hamann K, Willers G. Complex plane analysis of heat capacity of polymers in the glass transition region. J Phys E: Sci Inst. 1971;4:21.

    Google Scholar 

  58. 58.

    Tran KQ. Reversing and non-reversing phase transitions in Athabasca bitumen asphaltenes. M.Sc. Thesis. University of Alberta, Edmonton, Canada; 2009.

  59. 59.

    Clausse D, Gomez F, Pezron I, Komunjer L, Dalmazzone C. Morphology characterization of emulsions by differential scanning calorimetry. Adv Colloid Interface Sci. 2005;117:59–74.

    CAS  PubMed  Google Scholar 

  60. 60.

    Clausse D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J Therm Anal Calorim. 2010;101:1071–7.

    CAS  Google Scholar 

  61. 61.

    Clausse D, Gomez F, Dalmazzone C, Noik C. A method for the characterization of emulsions, thermogranulometry: application to water-in-crude oil emulsion. J Colloid Interface Sci. 2005;287:694–703.

    CAS  PubMed  Google Scholar 

  62. 62.

    Díaz-Ponce JA, Flores EA, Lopez-Ortega A, Hernández-Cortez JG, Estrada A, Castro LV, Vazquez F. Differential scanning calorimetry characterization of water-in-oil emulsions from Mexican crude oils. J Therm Anal Calorim. 2010;102:899–906.

    Google Scholar 

  63. 63.

    Dalmazzone C, Noïk C, Glénat P, Dang H-M. Development of a methodology for the optimization of dehydration of extraheavy-oil emulsions. In: SPE international symposium on oilfield chemistry. Woodlands, Texas: Society of Petroleum Engineers; April 2009.

  64. 64.

    Butler RM. Steam-assisted gravity drainage: concept, development, performance and future. J Can Pet Technol. 1994;33:44–50.

    CAS  Google Scholar 

  65. 65.

    Balsamo V, Nguyen D, Phan J. Non-conventional techniques to characterize complex SAGD emulsions and dilution effects on emulsion stabilization. J Pet Sci Eng. 2014;122:331–45.

    CAS  Google Scholar 

  66. 66.

    Balsamo V, Phan J, Nguyen D. Effect of Diluents on interfacial properties and SAGD emulsion stability: II. Differential scanning calorimetry and light scattering methods. In: SPE heavy oil conference calgary. Alberta: Society of Petroleum Engineers; June 2013; p. 1–16.

  67. 67.

    Piroozian A, Hemmati M, Ismail I, Manan MA, Bayat AE, Mohsin R. Effect of emulsified water on the wax appearance temperature of water-in-waxy-crude-oil emulsions. Thermochim Acta. 2016;637:132–42.

    CAS  Google Scholar 

  68. 68.

    Dalmazzone C, Noïk C, Clausse D. Application of DSC for emulsified system characterization. Oil Gas Sci Technol. 2009;64:543–55.

    CAS  Google Scholar 

  69. 69.

    Khan MN, Warrier P, Peters CJ, Koh CA. Review of vapor-liquid equilibria of gas hydrate formers and phase equilibria of hydrates. J Nat Gas Sci Eng. 2016;35:1388–404.

    CAS  Google Scholar 

  70. 70.

    Le Parlouër P, Dalmazzone C, Herzhaft B, Rousseau L, Mathonat C. Characterisation of gas hydrates formation using a new high pressure Micro-DSC. J Therm Anal Calorim. 2004;78:165–72.

    Google Scholar 

  71. 71.

    Dalmazzone C, Herzhaft B, Rousseau L, Le Parlouer P, Dalmazzone D. Prediction of gas hydrates formation with DSC technique. In: SPE annual technical conference and exhibition. Denver, Colorado: Society of Petroleum Engineers; October 2003.

  72. 72.

    Dalmazzone D, Hamed N, Dalmazzone C, Rousseau L. Application of high pressure DSC to the kinetics of formation of methane hydrate inwater-in-oilemulsion. J Therm Anal Calorim. 2006;85:361–8.

    CAS  Google Scholar 

  73. 73.

    Semenov ME, Manakov AY, Shitz EY, Stoporev AS, Altunina LK, Strelets LA, et al. DSC and thermal imaging studies of methane hydrate formation and dissociation in water emulsions in crude oils. J Therm Anal Calorim. 2015;119:757–67.

    CAS  Google Scholar 

  74. 74.

    Kök MV, Iscan AG. Oil shale kinetics by differential methods. J Therm Anal Calorim. 2007;88:657–61.

    Google Scholar 

  75. 75.

    Moore RG, Laureshen CJ, Belgrave JDM, Ursenbach MG, Mehta SA. In situ combustion in Canadian heavy oil reservoirs. Fuel. 1995;74:1169–75.

    CAS  Google Scholar 

  76. 76.

    Varfolomeev MA, Nagrimanov RN, Galukhin AV, Vakhin AV, Solomonov BN, Nurgaliev DK, et al. Contribution of thermal analysis and kinetics of Siberian and Tatarstan regions crude oils for in situ combustion process. J Therm Anal Calorim. 2015;122:1375–84.

    CAS  Google Scholar 

  77. 77.

    Kok MV. Combustion characteristics of Fossil Fuels by thermal analysis methods. Handb Combust. 2010;3:75–87.

    Google Scholar 

  78. 78.

    Varfolomeev MA, Nurgaliev DK, Kok MV. Thermal, kinetics, and oxidation mechanism studies of light crude oils in limestone and sandstone matrix using TG-DTG-DTA: effect of heating rate and mesh size. Pet Sci Technol. 2016;34:1647–53.

    CAS  Google Scholar 

  79. 79.

    Shishkin YL. Fractional and component analysis of crude oils by the method of dynamic microdistillation—differential scanning calorimetry coupled with thermogravimetry. Thermochim Acta. 2006;441:162–7.

    CAS  Google Scholar 

  80. 80.

    Shishkin YL. A new quick method of determining the group hydrocarbon composition of crude oils and oil heavy residues based on their oxidative distillation (cracking) as monitored by differential scanning calorimetry and thermogravimetry. Thermochim Acta. 2006;440:156–65.

    CAS  Google Scholar 

  81. 81.

    Kok MV, Gundogar AS. DSC study on combustion and pyrolysis behaviors of Turkish crude oils. Fuel Process Technol. 2013;116:110–5.

    CAS  Google Scholar 

  82. 82.

    Kök MV, Iscan AG. Catalytic effects of metallic additives on the combustion properties of crude oils by thermal analysis techniques. J Therm Anal Calorim. 2001;64:1311–8.

    Google Scholar 

  83. 83.

    Kök MV, Karacan Ö, Pamir R. Kinetic analysis of oxidation behavior of crude oil SARA constituents. Energy Fuels. 1998;12:580–8.

    Google Scholar 

  84. 84.

    Varfolomeev MA, Galukhin A, Nurgaliev DK, Kok MV. Thermal decomposition of Tatarstan Ashal’cha heavy crude oil and its SARA fractions. Fuel. 2016;186:122–7.

    CAS  Google Scholar 

  85. 85.

    Varfolomeev MA, Nurgaliev DK, Kok MV. Calorimetric study approach for crude oil combustion in the presence of clay as catalyst. Pet Sci Technol. 2016;34:1624–30.

    CAS  Google Scholar 

  86. 86.

    Kok MV. Clay concentration and heating rate effect on crude oil combustion by thermogravimetry. Fuel Process Technol. 2012;96:134–9.

    CAS  Google Scholar 

  87. 87.

    Ranjbar M. Influence of reservoir rock composition on crude oil pyrolysis and combustion. J Anal Appl Pyrolysis. 1993;27:87–95.

    CAS  Google Scholar 

  88. 88.

    Kok MV, Gundogar AS. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. J Therm Anal Calorim. 2010;99:779–83.

    CAS  Google Scholar 

  89. 89.

    Kök MV. Influence of reservoir rock composition on the combustion kinetics of crude oil. J Therm Anal Calorim. 2009;97:397.

    Google Scholar 

  90. 90.

    Karimian M, Schaffie M, Fazaelipoor MH. Determination of activation energy as a function of conversion for the oxidation of heavy and light crude oils in relation to in situ combustion. J Therm Anal Calorim. 2016;125:301–11.

    CAS  Google Scholar 

  91. 91.

    Ismail NB, Klock KA, Hascakir B. In-situ combustion experience in heavy oil carbonate. In: SPE Canada heavy oil technical conference Calgary, Alberta: Society of Petroleum Engineers; June 2016.

  92. 92.

    Li Y-B, Zhao J-Z, Pu W-F, Jia H, Peng H, Zhong D, et al. Catalytic effect analysis of metallic additives on light crude oil by TG and DSC tests. J Therm Anal Calorim. 2013;113:579–87.

    CAS  Google Scholar 

  93. 93.

    Drici O, Vossoughi S. Catalytic effect of heavy metal oxides on crude oil combustion. SPE Reserv Eng. 1987;2:591–5.

    CAS  Google Scholar 

  94. 94.

    Rezaei M, Schaffie M, Ranjbar M. Thermocatalytic in situ combustion: influence of nanoparticles on crude oil pyrolysis and oxidation. Fuel. 2013;113:516–21.

    CAS  Google Scholar 

  95. 95.

    Pu W, Pang S, Jia H. Using DSC/TG/DTA techniques to re-evaluate the effect of clays on crude oil oxidation kinetics. J Pet Sci Eng. 2015;134:123–30.

    CAS  Google Scholar 

  96. 96.

    Akin S, Kok MV, Bagci S, Karacan O. Oxidation of heavy oil and their SARA fractions: its role in modeling in-situ combustion. In: SPE annual technical conference exhibition. Dallas, Texas: Society of Petroleum Engineers; October 2000.

  97. 97.

    Yuan C, Varfolomeev MA, Emelianov DA, Eskin AA, Nagrimanov RN, Kok MV, et al. Oxidation behavior of light crude oil and its SARA fractions characterized by TG and DSC techniques: differences and connections. Energy Fuels. 2018;32:801–8.

    CAS  Google Scholar 

  98. 98.

    Liu D, Song Q, Tang J, Zheng R, Yao Q. Interaction between saturates, aromatics and resins during pyrolysis and oxidation of heavy oil. J Pet Sci Eng. 2017;154:543–50.

    CAS  Google Scholar 

  99. 99.

    Wei B, Zou P, Shang J, Gao K, Li Y, Sun L, et al. Integrative determination of the interactions between SARA fractions of an extra-heavy crude oil during combustion. Fuel. 2018;234:850–7.

    CAS  Google Scholar 

  100. 100.

    Kok MV, Karacan CO. Behavior and Effect of SARA fractions of oil during combustion. In: International thermal operations heavy oil symposium Bakersfield, California: Society of Petroleum Engineers; 1997.

  101. 101.

    Zhao S, Pu W, Sun B, Gu F, Wang L. Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fractions. Fuel. 2019;239:117–25.

    CAS  Google Scholar 

  102. 102.

    Freitag NP. Evidence that naturally occurring inhibitors affect the low-temperature oxidation kinetics of heavy oil. J Can Pet Technol. 2010;49:36–41.

    CAS  Google Scholar 

  103. 103.

    Ushakova A, Zatsepin V, Varfolomeev M, Emelyanov D. Study of the radical chain mechanism of hydrocarbon oxidation for in situ combustion process. J Combust. 2017;2017:1–11.

    Google Scholar 

  104. 104.

    Kök MV, Gul KG. Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. J Therm Anal Calorim. 2013;114:269–75.

    Google Scholar 

  105. 105.

    Kok MV, Gul KG. Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochim Acta. 2013;569:66–70.

    CAS  Google Scholar 

  106. 106.

    Varfolomeev MA, Rakipov IT, Isakov DR, Nurgaliev DK, Kok MV. Characterization and kinetics of Siberian and Tatarstan regions crude oils using differential scanning calorimetry. Pet Sci Technol. 2015;33:865–71.

    CAS  Google Scholar 

  107. 107.

    Li J, Mehta SA, Moore RG, Zalewski E, Ursenbach MG, Van Fraassen K. Investigation of the oxidation behaviour of pure hydrocarbon components and crude oils utilizing PDSC thermal technique. J Can Pet Technol. 2006;45:48–53.

    Google Scholar 

  108. 108.

    Li J, Mehta SA, Moore RG, Ursenbach MG. New insights into oxidation behaviours of crude oils. J Can Pet Technol. 2009;48:12–5.

    CAS  Google Scholar 

  109. 109.

    Li Y-B, Chen Y-F, Pu W-F, Dong H, Gao H, Jin F-Y, et al. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods. J Ind Eng Chem. 2017;48:249–58.

    CAS  Google Scholar 

  110. 110.

    Wei B, Zou P, Zhang X, Xu X, Wood C, Li Y. Investigations of structure–property–thermal degradation kinetics alterations of Tahe Asphaltenes caused by low temperature oxidation. Energy Fuels. 2018;32:1506–14.

    CAS  Google Scholar 

  111. 111.

    Kök MV. Non-isothermal kinetic analysis and feasibilty study of medium grade crude oil field. J Therm Anal Calorim. 2008;91:745–8.

    Google Scholar 

  112. 112.

    Kök MV, Sztatisz J, Pokol G. High-pressure DSC applications on crude oil combustion. Energy Fuels. 1997;11:1137–42.

    Google Scholar 

  113. 113.

    Das SC. A study of oxidation reaction kinetics during an air injection process. M.Sc. Thesis, University of Adelide, Adelaide, Austrailia; 2010.

  114. 114.

    Fan C, Zan C, Zhang Q, Shi L, Hao Q, Jiang H, et al. Air Injection for enhanced oil recovery: in situ monitoring the low-temperature oxidation of oil through thermogravimetry/differential scanning calorimetry and pressure differential scanning calorimetry. Ind Eng Chem Res. 2015;54:6634–40.

    CAS  Google Scholar 

  115. 115.

    Kök MV, Varfolomeev MA, Nurgaliev DK. Thermal characterization of crude oils by pressurized differential scanning calorimeter (PDSC). J Pet Sci Eng. 2019;177:540–3.

    Google Scholar 

  116. 116.

    Yuan C, Emelianov DA, Varfolomeev MA, Pu W, Ushakova AS. Oxidation Behavior and kinetics of eight C20–C54 n-alkanes by high pressure differential scanning calorimetry (HP-DSC). Energy Fuels. 2018;32:7933–42.

    CAS  Google Scholar 

  117. 117.

    Anto-Darkwah E, Cinar M. Effect of pressure on the isoconversional in situ combustion kinetic analysis of Bati Raman crude oil. J Pet Sci Eng. 2016;143:44–53.

    CAS  Google Scholar 

  118. 118.

    Greaves M, Field RW, Dudley JWO. Factorial experiments In: In-situ combustion annual technical meeting. Calgary, Alberta: Petroleum Society of Canada; 1990.

  119. 119.

    Bagci S. Effect of pressure on combustion kinetics of heavy oils. Energy Sources. 2005;27:887–98.

    CAS  Google Scholar 

  120. 120.

    Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Cham: Springer; 2015.

    Google Scholar 

  121. 121.

    Varfolomeev MA, Nagrimanov RN, Samatov AA, Rakipov IT, Nikanshin AD, Vakhin AV, et al. Chemical evaluation and kinetics of Siberian, north regions of Russia and Republic of Tatarstan crude oils. Energy Sources, Part A Recover Util Environ Eff. 2016;38:1031–8.

    CAS  Google Scholar 

  122. 122.

    Karimian M, Schaffie M, Fazaelipoor MH. A kinetic investigation into the in situ combustion reactions of Iranian heavy oil from Kuh-E-Mond reservoir. Iran J Oil Gas Sci Technol. 2017;6:18–33.

    Google Scholar 

  123. 123.

    Karimian M, Schaffie M, Fazaelipoor MH. Estimation of the kinetic triplet for in situ combustion of crude oil in the presence of limestone matrix. Fuel. 2017;209:203–10.

    CAS  Google Scholar 

  124. 124.

    Gundogar AS, Kok MV. Thermal characterization, combustion and kinetics of different origin crude oils. Fuel. 2014;123:59–65.

    CAS  Google Scholar 

  125. 125.

    Pu W, Chen Y, Li Y, Zou P, Li D. Comparison of different kinetic models for heavy oil oxidation characteristic evaluation. Energy Fuels. 2017;31:12665–76.

    CAS  Google Scholar 

  126. 126.

    Pereira AN, Trevisan OV. Thermoanalysis and reaction kinetics of heavy oil combustion. J Braz Soc Mech Sci Eng. 2014;36:393–401.

    CAS  Google Scholar 

  127. 127.

    Kok MV. Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter. Fuel Process Technol. 2012;96:123–7.

    CAS  Google Scholar 

  128. 128.

    Li Y-B, Chen Y, Pu W-F, Gao H, Bai B. Experimental investigation into the oxidative characteristics of Tahe heavy crude oil. Fuel. 2017;209:194–202.

    CAS  Google Scholar 

  129. 129.

    Kok MV, Ozgur E. Combustion performance and kinetics of oil shales. Energy Sources, Part A Recover Util Environ Eff. 2016;38:1039–47.

    CAS  Google Scholar 

  130. 130.

    Kök MV, Varfolomeev MA, Nurgaliev DK. Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques. J Pet Sci Eng. 2017;154:537–42.

    Google Scholar 

  131. 131.

    Kok MV, Ozgur E. Combustion performance and kinetics of oil shales. Energy Sources, Part A Recover Util Environ Eff. 2016;38:1039–47.

    CAS  Google Scholar 

  132. 132.

    Altun NE, Hicyilmaz C, Hwang J-Y, Bagci AS, Kok MV. Oil shales in the world and Turkey; reserves, current situation and future prospects: a review. In: Raukas A, editor. Oil shale. Talinn: Estonian Academy Publishers; 2006. p. 211–28.

    Google Scholar 

  133. 133.

    Yen TF, Chilingar GV. Introduction to oil shales. In: Yen TF, Chilingarian GV, editors. Development in petroleum sciences. Amsterdam: Elsevier; 1976. p. 1–12.

    Google Scholar 

  134. 134.

    Kok MV. Oil shale: pyrolysis, combustion, and environment: a review. Energy Sources. 2002;24:135–43.

    CAS  Google Scholar 

  135. 135.

    Khakimova L, Bondarenko T, Cheremisin A, Myasnikov A, Varfolomeev M. High pressure air injection kinetic model for Bazhenov Shale Formation based on a set of oxidation studies. J Pet Sci Eng. 2019;172:1120–32.

    CAS  Google Scholar 

  136. 136.

    Kök MV. Heating rate effect on the DSC kinetics of oil shales. J Therm Anal Calorim. 2007;90:817–21.

    Google Scholar 

  137. 137.

    Kok MV, Şengüler İ. Geological and thermal characterization of Eskişehir region oil shales. J Therm Anal Calorim. 2014;116:367–72.

    CAS  Google Scholar 

  138. 138.

    Kok MV. Thermal investigation of Seyitomer oil shale. Thermochim Acta. 2001;369:149–55.

    CAS  Google Scholar 

  139. 139.

    Kok MV. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior. Energy Sources, Part A Recover Util Environ Eff. 2009;32:323–35.

    Google Scholar 

  140. 140.

    Kok MV. Evaluation of Turkish oil shales-thermal analysis approach. In: Kann J, editor. oil shale. Talinn: Estonian Academy Publishers; 2001. p. 131–8.

    Google Scholar 

  141. 141.

    Kök MV, Sztatisz J, Pokol G. Characterization of oil shales by high pressure DSC. J Therm Anal Calorim. 1999;56:939–46.

    Google Scholar 

  142. 142.

    Rogers RN, Smith LC. Estimation of preexponential factor from thermal decomposition curve of an unweighed sample. Anal Chem. 1967;39:1024–5.

    CAS  Google Scholar 

  143. 143.

    ASTM E698-18: Standard test method for kinetic parameters for thermally unstable materials using differential scanning calorimetry and the Flynn/Wall/Ozawa Method. ASTM International; 2018.

  144. 144.

    Kök MV, Pamir MR. ASTM kinetics of oil shales. J Therm Anal Calorim. 1998;53:567–75.

    Google Scholar 

  145. 145.

    Skala D, Kopsch H, Sokić M, Neumann H-J, Jovanović J. Thermogravimetrically and differential scanning calorimetrically derived kinetics of oil shale pyrolysis. Fuel. 1987;66:1185–91.

    CAS  Google Scholar 

  146. 146.

    Parsons AF. An introduction to free radical chemistry. Hoboken: Wiley; 2000.

    Google Scholar 

  147. 147.

    Phillips CR, Luymes R, Halahel TM. Enthalpies of pyrolysis and oxidation of Athabasca oil sands. Fuel. 1982;61:639–46.

    CAS  Google Scholar 

  148. 148.

    Karacan O, Kok MV. Pyrolysis analysis of crude oils and their fractions. Energy Fuels. 1997;11:385–91.

    CAS  Google Scholar 

  149. 149.

    Chen K, Wang Z, Liu H, Guo A. Study on thermal performance of heavy oils by using differential scanning calorimetry. Fuel Process Technol. 2012;99:82–9.

    CAS  Google Scholar 

  150. 150.

    Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V. Heat of wood pyrolysis. Fuel. 2003;82:81–91.

    Google Scholar 

  151. 151.

    Brennan WP, Miller B, Whitwell JC. Improved method of analyzing curves in differential scanning calorimetry. Ind Eng Chem Fundam. 1969;8:314–8.

    CAS  Google Scholar 

  152. 152.

    Guzmán C, Montero C, Briceńo MI, Chirinos ML, Layrisse I. Physical properties and characterization of venezuelan heavy and extraheavy crudes and bitumens. Fuel Sci Technol Int. 1989;7:571–98.

    Google Scholar 

  153. 153.

    Zeng J, Fan LT, Schlup JR. Critical thermodynamic analysis of differential scanning calorimetry for studying chemical kinetics. J Therm Anal Calorim. 1998;51:205–18.

    CAS  Google Scholar 

  154. 154.

    Rosenvold RJ, DuBow JB, Rajeshwar K. Thermophysical characterization of oil sands. 4. Therm Anal Thermochim Acta. 1982;58:325–31.

    CAS  Google Scholar 

  155. 155.

    Ritchie RGS, Roche RS, Steedman W. A pyrolysis-gas chromatographic analysis of Athabasca bitumen. Ind Eng Chem Prod Res Dev. 1978;17:370–2.

    CAS  Google Scholar 

  156. 156.

    Ma Y, Li S. The pyrolysis, extraction and kinetics of Buton oil sand bitumen. Fuel Process Technol. 2012;100:11–5.

    CAS  Google Scholar 

  157. 157.

    Chen K, Wang Z, Liu H, Ruan Y, Guo A. Thermodynamic and thermokinetic study on pyrolysis process of heavy oils. J Therm Anal Calorim. 2013;112:1423–31.

    CAS  Google Scholar 

  158. 158.

    Berkovich AJ, Levy JH, Young BR, Schmidt SJ. Predictive heat model for australian oil shale drying and retorting. Ind Eng Chem Res. 2000;39:2592–600.

    CAS  Google Scholar 

  159. 159.

    Berkovich AJ, Levy JH, Schmidt SJ, Young BR. Heat capacities and enthalpies for some Australian oil shales from non-isothermal modulated DSC. Thermochim Acta. 2000;357–358:41–5.

    Google Scholar 

  160. 160.

    Liu QQ, Han XX, Li QY, Huang YR, Jiang XM. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J Therm Anal Calorim. 2014;116:511–7.

    CAS  Google Scholar 

  161. 161.

    Kök MV, Pamir MR. Non-isothermal pyrolysis and kinetics of oil shales. J Therm Anal Calorim. 1999;56:953–8.

    Google Scholar 

  162. 162.

    Kok MV, Pamir R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. In: Kann J, editor. oil shale. Talinn: Estonian Academy Publishers; 2003. p. 57–68.

    Google Scholar 

  163. 163.

    Skala D, Kopsch H, Sokić M, Neumann HJ, Jovanović JA. Kinetics and modelling of oil shale pyrolysis. Fuel. 1990;69:490–6.

    CAS  Google Scholar 

  164. 164.

    Skala D, Sokić M, Tomić J, Kopsch H. Kinetic analysis of consecutive reactions using TG and DSC techniques. J Therm Anal. 1989;35:1441–58.

    CAS  Google Scholar 

  165. 165.

    Değirmenci L, Durusoy T. Effect of heating rate on pyrolysis kinetics of Göynük oil shale. Energy Sources. 2002;24:931–6.

    Google Scholar 

  166. 166.

    Wang W, Li S, Yue C, Ma Y. Multistep pyrolysis kinetics of North Korean oil shale. J Therm Anal Calorim. 2015;119:643–9.

    CAS  Google Scholar 

  167. 167.

    Palayangoda SS, Nguyen QP. Thermal behavior of raw oil shale and its components. Talinn: Estonian Academy Publishers; 2015. p. 131–8.

    Google Scholar 

  168. 168.

    Milosavljevic I, Oja V, Suuberg EM. Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res. 1996;35:653–62.

    CAS  Google Scholar 

  169. 169.

    Khraisha YH, Shabib IM. Thermal analysis of shale oil using thermogravimetry and differential scanning calorimetry. Energy Convers Manag. 2002;43:229–39.

    CAS  Google Scholar 

  170. 170.

    Zanier A, Jäckle HW. Heat capacity measurements of petroleum fuels by modulated DSC. Thermochim Acta. 1996;287:203–12.

    CAS  Google Scholar 

  171. 171.

    Zanier A. Application of modulated temperature DSC to distillate fuels and lubricating greases. J Therm Anal Calorim. 1998;54:381–90.

    CAS  Google Scholar 

  172. 172.

    Berkovich AJ, Young BR, Levy JH, Schmidt SJ, Ray A. Thermal characterisation of Australian oil shales. J Therm Anal. 1997;49:737–43.

    CAS  Google Scholar 

  173. 173.

    Al-Harahsheh M, Al-Ayed O, Robinson J, Kingman S, Al-Harahsheh A, Tarawneh K, et al. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process Technol. 2011;92:1805–11.

    CAS  Google Scholar 

  174. 174.

    Karabakan A, Yürüm Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel. 1998;77:1303–9.

    CAS  Google Scholar 

  175. 175.

    Varma-Nair M, Wunderlich B. Non isothermal heat capacities and chemical reactions using a modulated DSC. J Therm Anal. 1996;46:879–92.

    CAS  Google Scholar 

  176. 176.

    Khoshooei MA, Sharp D, Maham Y, Afacan A, Dechaine GP. A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC). Thermochim Acta. 2018;659:232–41.

    CAS  Google Scholar 

  177. 177.

    Khoshooei MA, Sharp D, Afacan A, Dechaine GP. Vapor-liquid equilibrium data of binary mixtures of 1-hexanol, 1-heptanol, 1-nonanol and 1,3-propanediol at P = 101.3 kPa using differential scanning calorimetry (DSC). J Chem Thermodyn. 2019;132:105–12.

    CAS  Google Scholar 

  178. 178.

    Khoshooei MA. Vapour-liquid equilibrium of by-products n-alcohols and 1, 3-propanediol from polyol production. M.Sc. Thesis, University of Alberta, Edmonton; 2013.

  179. 179.

    Focke WW, van der Westhuizen I. Oxidation induction time and oxidation onset temperature of polyethylene in air. J Therm Anal Calorim. 2010;99:285–93.

    CAS  Google Scholar 

  180. 180.

    Maleville X, Faure D, Legros A, Hipeaux JC. Oxidation of mineral base oils of petroleum origin: the relationship between chemical composition, thickening, and composition of degradation products. Lubr Sci. 2006;9:1–60.

    Google Scholar 

  181. 181.

    Cranton GE. Composition and oxidation of petroleum fractions. Thermochim Acta. 1976;14:201–8.

    CAS  Google Scholar 

  182. 182.

    Perez JM. Oxidative properties of lubricants using thermal analysis. Thermochim Acta. 2000;357–358:47–56.

    Google Scholar 

  183. 183.

    Sharma BK, Stipanovic AJ. Development of a new oxidation stability test method for lubricating oils using high-pressure differential scanning calorimetry. Thermochim Acta. 2003;402:1–18.

    CAS  Google Scholar 

  184. 184.

    Hassel RL. Thermal analysis: an alternative method of measuring oil stability. J Am Oil Chem Soc. 1976;53:179–81.

    CAS  Google Scholar 

  185. 185.

    ASTM D6186-08(2013): Standard test method for oxidation induction time of lubricating oils by pressure differential scanning calorimetry (PDSC). ASTM International. 2013.

  186. 186.

    Kauffman RE, Rhine WE. Development of a remaining useful life of a lubricant evaluation technique. Part I: Differential scanning calorimetric techniques. Lubr Eng. 1988;22:154–61.

    Google Scholar 

  187. 187.

    Bowman WF, Stachowiak GW. Determining the oxidation stability of lubricating oils using sealed capsule differential scanning calorimetry (SCDSC). Tribol Int. 1996;29:27–34.

    CAS  Google Scholar 

  188. 188.

    Barman BN. Behavioral differences between group I and group II base oils during thermo-oxidative degradation. Tribol Int. 2002;35:15–26.

    CAS  Google Scholar 

  189. 189.

    Adhvaryu A, Perez JM, Singh ID. Application of quantitative NMR spectroscopy to oxidation kinetics of base oils using a pressurized differential scanning calorimetry technique. Energy Fuels. 1999;13:493–8.

    CAS  Google Scholar 

  190. 190.

    Adhvaryu A, Erhan SZ, Sahoo SK, Singh ID. Thermo-oxidative stability studies on some new generation API group II and III base oils. Fuel. 2002;81:785–91.

    CAS  Google Scholar 

  191. 191.

    Cerny J, Strnad Z, Sebor G. Composition and oxidation stability of SAE 15 W-40 engine oils. Tribol Int. 2001;34:127–34.

    CAS  Google Scholar 

  192. 192.

    Jezl J, Stuart A, Schneider A. Interrelated effects of oil components on oxidation stability. Ind Eng Chem. 1958;50:947–50.

    CAS  Google Scholar 

  193. 193.

    Zuidema HH. Oxidation of lubricating oils. Chem Rev. 1946;38:197–226.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milad Ahmadi Khoshooei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Khoshooei, M., Fazlollahi, F. & Maham, Y. A review on the application of differential scanning calorimetry (DSC) to petroleum products. J Therm Anal Calorim 138, 3455–3484 (2019). https://doi.org/10.1007/s10973-019-08244-2

Download citation

Keywords

  • DSC
  • Oil characterization
  • Glass transition
  • Combustion
  • Pyrolysis
  • Oil shale