Advertisement

Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage

  • Peng LiuEmail author
  • Xiaobin GuEmail author
  • Liang Bian
  • Lihua Peng
  • Huichao He
Article
  • 34 Downloads

Abstract

Leakage issue and low thermal conductivity largely restrict feasibility of fatty acid in real application of thermal energy storage (TES). In this paper, a novel form-stable phase change material (FSPCM) capric acid/diatomite (CA/DT) for TES was prepared using direct impregnation method by using CA as PCM and diatomite as supporting material. The fabricated composites were investigated in detail via the leakage test to determine the optimization proportion, and the real mechanism of preventing leakage by diatomite was analyzed. The characterization techniques such as thermogravimetric analysis, differential scanning calorimetry, intelligent paperless recorder technology, Fourier transform infrared spectrometer and scanning electron microscopy were applied to systematically investigate the thermal properties, microstructure and thermal compatibility of the prepared composites. The results showed that the maximum mass ratio of CA adsorbed into DT without leakage is as high as 50 mass%, which is mainly ascribed to the porous structure of DT. The selected FSPCM has a melting point of 34.9 °C and latent heat of 89.2 J g−1. What is more, the CA/DT FSPCM exhibits a distinctly enhanced thermal stability by TG analyses. The heat transfer efficiency of the CA/DT FSPCM is higher than that of pristine CA. Due to the high adsorption capacity, high latent heat, good thermal stability as well as low cost, the CA/DT FSPCM can be considered as potential materials for thermal energy storage.

Keywords

Form-stable phase change materials Capric acid Diatomite Building energy conservation Thermal energy storage Leakage 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (41872039 and 41831285), Hebei Key Technology R&D Program of the Agency of Hebei Province (17214016), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (17kffk13), the One-Thousand-Talents Scheme in Sichuan Province, Sichuan Science and Technology Program (2018JY0462), Hebei outstanding young scholars, Longshan Fund of Southwest University of Science and Technology (17QR004), the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (2018CL20) and PhD Research Startup Foundation of Hebei GEO University (BQ2017020, BQ2017021).

References

  1. 1.
    Gu X, Qin S, Wu X, Li Y, Liu Y. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite composite phase change material. J Therm Anal Calorim. 2016;125(2):831–8.  https://doi.org/10.1007/s10973-016-5444-4.Google Scholar
  2. 2.
    Wen R, Jia P, Huang Z, Fang M, Liu Y, Wu X, et al. Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. J Therm Anal Calorim. 2018;132(3):1–9.  https://doi.org/10.1007/s10973-017-6934-8.Google Scholar
  3. 3.
    Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109(2):459–64.  https://doi.org/10.1016/j.matchemphys.2007.12.016.Google Scholar
  4. 4.
    Mei D, Zhang B, Liu R, Zhang Y, Liu J. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95(10):2772–7.  https://doi.org/10.1016/j.solmat.2011.05.024.Google Scholar
  5. 5.
    Karaipekli A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33(12):2599–605.  https://doi.org/10.1016/j.renene.2008.02.024.Google Scholar
  6. 6.
    Jamekhorshid A, Sadrameli SM, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev. 2014;31(2):531–42.  https://doi.org/10.1016/j.rser.2013.12.033.Google Scholar
  7. 7.
    Fang Y, Liu X, Liang X, Liu H, Gao X, Zhang Z. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage. Appl Energy. 2014;132(11):551–6.  https://doi.org/10.1016/j.apenergy.2014.06.056.Google Scholar
  8. 8.
    Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy. 2014;66(4):881–90.  https://doi.org/10.1016/j.energy.2014.01.033.Google Scholar
  9. 9.
    Khadiran T, Hussein MZ, Zainal Z, Rusli R. Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mater Sol Cells. 2015;143:78–98.  https://doi.org/10.1016/j.solmat.2015.06.039.Google Scholar
  10. 10.
    Sarı A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings. Energy Build. 2015;96:193–200.  https://doi.org/10.1016/j.enbuild.2015.03.022.Google Scholar
  11. 11.
    Liu S, Yang H. Composite of coal-series kaolinite and capric-lauric acid as form-stable phase-change material. Energy Technol. 2015;3(1):77–83.  https://doi.org/10.1002/ente.201402125.Google Scholar
  12. 12.
    Lv P, Liu C, Rao Z. Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications. Renew Sustain Energy Rev. 2017;68:707–26.  https://doi.org/10.1016/j.rser.2016.10.014.Google Scholar
  13. 13.
    Sobolciak P, Karkri M, Al-Maadeed MA, Krupa I. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renew Energy. 2016;88:372–82.  https://doi.org/10.1016/j.renene.2015.11.056.Google Scholar
  14. 14.
    Liu S, Han L, Xie S, Jia Y, Sun J, Jing Y, et al. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol Energy. 2017;143:22–30.  https://doi.org/10.1016/j.solener.2016.12.027.Google Scholar
  15. 15.
    Karaipekli A, Biçer A, Sarı A, Tyagi V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.  https://doi.org/10.1016/j.enconman.2016.12.053.Google Scholar
  16. 16.
    Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem. 2010;16(5):767–73.  https://doi.org/10.1016/j.jiec.2010.07.003.Google Scholar
  17. 17.
    Jeong SG, Jeon J, Chung O, Kim S, Kim S. Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J Therm Anal Calorim. 2013;114(2):689–98.  https://doi.org/10.1007/s10973-013-3008-4.Google Scholar
  18. 18.
    Deng Y, Li J, Qian T, Guan W, Wang X. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage. J Mater Sci Technol. 2016;2:198–203.  https://doi.org/10.1016/j.jmst.2016.02.011.Google Scholar
  19. 19.
    Liu Z, Hu D, Lv H, Zhang Y, Wu F, Shen D, et al. Mixed mill-heating fabrication and thermal energy storage of diatomite/paraffin phase change composite incorporated gypsum-based materials. Appl Therm Eng. 2017;118:703–13.  https://doi.org/10.1016/j.applthermaleng.2017.02.057.Google Scholar
  20. 20.
    Ramakrishnan S, Sanjayan J, Wang X, Alam M, Wilson J. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy. 2015;157:85–94.  https://doi.org/10.1016/j.apenergy.2015.08.019.Google Scholar
  21. 21.
    Li X, Chen H, Liu L, Lu Z, Sanjayan JG, Duan W. Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Sol Energy. 2016;137:179–88.  https://doi.org/10.1016/j.solener.2016.08.012.Google Scholar
  22. 22.
    Ramakrishnan S, Wang X, Sanjayan J, Wilson J. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of PCM leakage. Mater Lett. 2017;192:88–91.  https://doi.org/10.1016/j.matlet.2016.12.052.Google Scholar
  23. 23.
    Li H, Chen H, Li X, Sanjayan JG. Development of thermal energy storage composites and prevention of PCM leakage. Appl Energy. 2014;35:225–33.  https://doi.org/10.1016/j.apenergy.2014.08.091.Google Scholar
  24. 24.
    Han J, Liu S. Myristic acid-hybridized diatomite composite as a shape-stabilized phase change material for thermal energy storage. RSC Adv. 2017;7(36):22170–7.  https://doi.org/10.1039/C7RA02385E.Google Scholar
  25. 25.
    Wen R, Zhang X, Huang Z, Fang M, Liu Y, Wu X, et al. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2018;178:273–9.  https://doi.org/10.1016/j.solmat.2018.01.032.Google Scholar
  26. 26.
    Sarı A, Bicer A, Al-Sulaiman FA, Karaipekli A, Tyagi V. Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: preparation and thermal energy storage properties. Energy Build. 2018;164:166–75.  https://doi.org/10.1016/j.enbuild.2018.01.009.Google Scholar
  27. 27.
    Fu X, Liu Z, Xiao Y, Wang J, Lei J. Preparation and properties of lauric acid/diatomite composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2015;104:244–9.  https://doi.org/10.1016/j.enbuild.2015.06.059.Google Scholar
  28. 28.
    Li C, Fu L, Ouyang J, Tang A, Yang H. Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci. 2015;115:212–20.  https://doi.org/10.1016/j.clay.2015.07.033.Google Scholar
  29. 29.
    Li B, Nie S, Hao Y, Liu T, Zhu J, Yan S. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage. Energy Convers Manag. 2015;98:314–21.  https://doi.org/10.1016/j.enconman.2015.04.002.Google Scholar
  30. 30.
    Lv P, Liu C, Rao Z. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change material. Appl Energy. 2016;182:475–87.  https://doi.org/10.1016/j.apenergy.2016.08.147.Google Scholar
  31. 31.
    Goitandia AM, Beobide G, Aranzabe E, Aranzabe A. Development of content-stable phase change composites by infiltration into inorganic porous supports. Sol Energy Mater Sol Cells. 2015;134:318–28.  https://doi.org/10.1016/j.solmat.2014.12.010.Google Scholar
  32. 32.
    Liu S, Yang H. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage. Appl Clay Sci. 2014;101:277–81.  https://doi.org/10.1016/j.clay.2014.09.002.Google Scholar
  33. 33.
    Gu X, Liu P, Bian L, Peng L, Liu Y, He H. Mullite stabilized palmitic acid as phase change materials for thermal energy storage. Minerals. 2018;8(10):440–50.  https://doi.org/10.3390/min8100440.Google Scholar
  34. 34.
    Su X, Jia S, Lv G, Yu D. A unique strategy for polyethylene glycol/hybrid carbon foam phase change materials: morphologies, thermal properties, and energy storage behavior. Materials. 2018;11:2011–27.  https://doi.org/10.3390/mal1102011.Google Scholar
  35. 35.
    Sarı A, Karaipekli A. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. Mater Chem Phys. 2008;109(2):459–64.  https://doi.org/10.1016/j.matchemphys.2007.12.016.Google Scholar
  36. 36.
    Mei D, Zhang B, Liu R, Zhang Y, Liu J. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95(10):2772–7.  https://doi.org/10.1016/j.solmat.2011.05.024.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.College of Gems and Materials TechnologyHebei GEO UniversityShijiazhuangChina
  2. 2.State Key Laboratory for Environment-Friendly Energy MaterialsSouth West University of Science and TechnologyMianyangChina
  3. 3.Material Corrosion and Protection Key Laboratory of Sichuan ProvinceZigongChina
  4. 4.Key Laboratory of Solid Waste Treatment and Resource RecycleMinistry of Education, South West University of Science and TechnologyMianyangChina
  5. 5.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations