Skip to main content
Log in

Isothermal crystallization kinetics of PET/alumina nanocomposites using distinct macrokinetic models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) filled with 0 to 5 wt% alumina (Al2O3) nanoparticles (NPs) has been investigated at a wide range of defined crystallization temperatures (i.e., 190–220 °C) using differential scanning calorimetry (DSC). The obtained DSC data (experimentally) under isothermal condition was compared with the calculated data obtained from each macrokinetic equation of Avrami, Tobin, Malkin, and Urbanovici–Segal models using data fitting procedure. The goodness of best fit for the qualitative analysis of isothermal crystallization data obtained from each model has been evaluated using nonlinear multivariable regression program. The obtained results from four distinct models are compared based on isothermal kinetic parameters and the quality of the fitted data. The Avrami, Malkin, and Urbanovici–Segal models have appropriately described the isothermal crystallization kinetics, whereas the Tobin model was less satisfactory in describing the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hussain F. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  2. Wasiak A, Sajkiewicz P, Woźniak A. Effects of cooling rate on crystallinity of i-polypropylene and polyethylene terephthalate crystallized in nonisothermal conditions. J Polym Sci, Part B: Polym Phys. 1999;37:2821–7.

    Article  CAS  Google Scholar 

  3. Keller A, Goldbeck-Wood G, Hikosaka M. Polymer crystallization: survey and new trends with wider implications for phase transformations. Faraday Discuss. 1993;95:109–28.

    Article  CAS  Google Scholar 

  4. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer. 1997;38:3151–212.

    Article  CAS  Google Scholar 

  5. Hay JN. Crystallisation kinetics and melting studies. Br Polym J. 1979;11:137–45.

    Article  CAS  Google Scholar 

  6. Ibbotson C, Sheldon RP. Heterogeneous crystallisation of polyethylene terephthalate. Br Polym J. 1979;11:146–50.

    Article  CAS  Google Scholar 

  7. Fava RA. Polymer crystals—a review. Br Polym J. 1969;1:59–64.

    Article  CAS  Google Scholar 

  8. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.

    Article  Google Scholar 

  9. Duffin WJ. Treatise on solid-state chemistry. Vol. 3. Crystalline and noncrystalline solids edited by N. B. Hannay. Acta Crystallogr B. 1977;33:2001–2.

    Article  Google Scholar 

  10. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  11. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  12. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  13. Evans UR. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans Faraday Soc. 1945;41:365–74.

    Article  CAS  Google Scholar 

  14. Ding Z, Spruiell JE. Interpretation of the nonisothermal crystallization kinetics of polypropylene using a power law nucleation rate function. J Polym Sci Part B Polym Phys. 1997;35:1077–93.

    Article  CAS  Google Scholar 

  15. Tobin MC. Theory of phase transition kinetics with growth site impingement. I. Homogeneous nucleation. J Polym Sci Polym Phys Ed. 1974;12:399–406.

    Article  CAS  Google Scholar 

  16. Tobin MC. The theory of phase transition kinetics with growth site impingement. II. Heterogeneous nucleation. J Polym Sci Polym Phys Ed. 1976;14:2253–7.

    Article  CAS  Google Scholar 

  17. Tobin MC. Theory of phase transition kinetics with growth site impingement. III. Mixed heterogeneous–homogeneous nucleation and nonintegral exponents of the time. J Polym Sci Polym Phys Ed. 1977;15:2269–70.

    Article  CAS  Google Scholar 

  18. Malkin AY, Beghishev VP, Keapin IA, Bolgov SA. General treatment of polymer crystallization kinetics—part 1. A new macrokinetic equation and its experimental verification. Polym Eng Sci. 1984;24:1396–401.

    Article  CAS  Google Scholar 

  19. Urbanovici E, Segal E. New formal relationships to describe the kinetics of crystallization. Thermochim Acta. 1990;171:87–94.

    Article  CAS  Google Scholar 

  20. Huang J-W, Kang C-C, Chen T-H. Isothermal crystallization of poly(ethylene-co-glycidyl methacrylate)/silica nanocomposites. Polym J. 2005;37:550–9.

    Article  CAS  Google Scholar 

  21. Wan T, Chen L, Chua YC, Lu X. Crystalline morphology and isothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci. 2004;94:1381–8.

    Article  CAS  Google Scholar 

  22. Yang Y, Xu H, Gu H. Preparation and crystallization of poly(ethylene terephthalate)/SiO2 nanocomposites by in situ polymerization. J Appl Polym Sci. 2006;102:655–62.

    Article  CAS  Google Scholar 

  23. Antoniadis G, Paraskevopoulos KM, Bikiaris D, Chrissafis K. Kinetics study of cold-crystallization of poly(ethylene terephthalate) nanocomposites with multi-walled carbon nanotubes. Thermochim Acta. 2009;493:68–75.

    Article  CAS  Google Scholar 

  24. Zheng K, Yao X, Chen L, Tian XY. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/attapulgite nanocomposites studied by step-scan DSC. J Macromol Sci Part B. 2009;48:318–28.

    Article  CAS  Google Scholar 

  25. Zhang H-B, Zheng W-G, Yan Q, Yang Y, Wang J-W, Lu Z-H, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer. 2010;51:1191–6.

    Article  CAS  Google Scholar 

  26. Aharoni SM. Nucleation of PET crystallization by metal hydroxides. J Appl Polym Sci. 1984;29:853–65.

    Article  CAS  Google Scholar 

  27. Bhimaraj P, Yang H, Siegel RW, Schadler LS. Crystal nucleation and growth in poly(ethylene terephthalate)/alumina-nanoparticle composites. J Appl Polym Sci. 2007;106:4233–40.

    Article  CAS  Google Scholar 

  28. Kuo MC, Huang JC, Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys. 2006;99:258–68.

    Article  CAS  Google Scholar 

  29. Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules. 2006;39:6565–73.

    Article  CAS  Google Scholar 

  30. Gao W, Wang Z, Zhao Z, Ding L, Zhu Y. Effect of barium sulfate on thermal stability and crystallization properties of poly(ethylene terephthalate). J Therm Anal Calorim. 2017;129:1047–55.

    Article  CAS  Google Scholar 

  31. Albano C, Papa J, Ichazo M, González J, Ustariz C. Application of different macrokinetic models to the isothermal crystallization of PP/talc blends. Compos Struct. 2003;62:291–302.

    Article  Google Scholar 

  32. Supaphol P, Spruiell JE. Isothermal melt- and cold-crystallization kinetics and subsequent melting behavior in syndiotactic polypropylene: a differential scanning calorimetry study. Polymer. 2001;42:699–712.

    Article  CAS  Google Scholar 

  33. Supaphol P, Spruiell JE. Application of the Avrami, Tobin, Malkin, and simultaneous Avrami macrokinetic models to isothermal crystallization of syndiotactic polypropylenes. J Macromol Sci Part B. 2000;39:257–77.

    Article  Google Scholar 

  34. Al-Mulla A. Isothermal crystallization kinetics of poly(ethylene terephthalate) and poly(methyl methacrylate) blends. Express Polym Lett. 2007;1:334–44.

    Article  CAS  Google Scholar 

  35. Supaphol P. Application of the Avrami, Tobin, Malkin, and Urbanovici-Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim Acta. 2001;370:37–48.

    Article  CAS  Google Scholar 

  36. Ghasemi H, Carreau PJ, Kamal MR. Isothermal and non-isothermal crystallization behavior of PET nanocomposites. Polym Eng Sci. 2012;52:372–84.

    Article  CAS  Google Scholar 

  37. Xanthos M, Baltzis BC, Hsu PP. Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate). J Appl Polym Sci. 1997;64:1423–35.

    Article  CAS  Google Scholar 

  38. Kim SP, Kim SC. Crystallization kinetics of poly(ethylene terephthalate): Cmemory effect of shear history. Polym Eng Sci. 1993;33:83–91.

    Article  CAS  Google Scholar 

  39. Lu XF, Hay JN. Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer. 2001;42:9423–31.

    Article  CAS  Google Scholar 

  40. Ke Y, Long C, Qi Z. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci 71:1139–46. Available from: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO;2-E/abstract.

    Article  CAS  Google Scholar 

  41. Lorenzo MLD, Errico ME, Avella M. Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites. J Mater Sci [Internet]. 2002 [cited 2017 Sep 28];37:2351–8. Available from: https://link.springer.com/article/10.1023/A:1015358425449.

  42. Chang J-H, Mun MK. Nanocomposite fibers of poly(ethylene terephthalate) with montmorillonite and mica: thermomechanical properties and morphology. Polym Int. 2007;56:57–66.

    Article  CAS  Google Scholar 

  43. Wunderlich B. Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, Vol. 3, Crystal Melting. Academic Press, New York; 1976.

  44. Kalkar AK, Deshpande VD, Kulkarni MJ. Isothermal crystallization kinetics of poly(phenylene sulfide)/TLCP composites. Polym Eng Sci. 2009;49:397–417.

    Article  CAS  Google Scholar 

  45. Supaphol P, Spruiell JE. Thermal properties and isothermal crystallization of syndiotactic polypropylenes: Differential scanning calorimetry and overall crystallization kinetics. J Appl Polym Sci [Internet]. 2000 [cited 2017 Sep 28];75:44–59. Available from: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-4628(20000103)75:1<44::AID-APP6>3.0.CO;2-1/abstract.

  46. Supaphol P, Spruiell JE. Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. J Appl Polym Sci. 2000;75:337–46.

    Article  CAS  Google Scholar 

  47. Ravindranath K, Jog JP. Polymer crystallization kinetics: poly(ethylene terephthalate) and poly(phenylene sulfide). J Appl Polym Sci. 1993;49:1395–403.

    Article  CAS  Google Scholar 

  48. Cruz-Pinto JJC, Martins JA, Oliveira MJ. The isothermal crystallization of engineering polymers—POM and PEEK. Colloid Polym Sci. 1994;272:1–16.

    Article  CAS  Google Scholar 

  49. Jabarin SA. Crystallization kinetics of polyethylene terephthalate. I. Isothermal crystallization from the melt. J Appl Polym Sci. 1987;34:85–96.

    Article  CAS  Google Scholar 

  50. Jabarin SA. Crystallization kinetics of polyethylene terephthalate. II. Dynamic crystallization of PET. J Appl Polym Sci. 1987;34:97–102.

    Article  CAS  Google Scholar 

  51. Jabarin SA. Crystallization kinetics of poly(ethylene terephthalate). III. Effect of moisture on the crystallization behavior of PET from the glassy state. J Appl Polym Sci. 1987;34:103–8.

    Article  CAS  Google Scholar 

  52. V. López J, A. Pérez-Camargo R, Zhang B, M. Grayson S, J. Müller A. The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules. RSC Adv [Internet]. 2016 [cited 2018 Aug 7];6:48049–63. Available from: https://pubs.rsc.org/en/content/articlelanding/2016/ra/c6ra04823d.

    Article  CAS  Google Scholar 

  53. Asadinezhad A, Jafari SH, Khonakdar HA, Böhme F, Hässler R, Häussler L. Kinetics of isothermal crystallization and subsequent melting behavior of PTT/PA12 blend. J Appl Polym Sci. 2007;106:1964–71.

    Article  CAS  Google Scholar 

  54. Dangseeyun N, Srimoaon P, Supaphol P, Nithitanakul M. Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochim Acta. 2004;409:63–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author PNN gratefully acknowledges the University Grant Commission, (SAP-program, contract grant No. F.5-65/2007(BSR)), New Delhi, India, for awarding the fellowship and also thankful to TEQIP (phase II-Maharashtra Government) financial research assistanceship (RA) for extended research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeta D. Deshpande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikam, P.N., Deshpande, V.D. Isothermal crystallization kinetics of PET/alumina nanocomposites using distinct macrokinetic models. J Therm Anal Calorim 138, 1049–1067 (2019). https://doi.org/10.1007/s10973-019-08192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08192-x

Keywords

Navigation