Skip to main content
Log in

Taguchi optimization for natural convection heat transfer of Al2O3 nanofluid in a partially heated cavity using LBM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study for the first time, Taguchi approach was applied to specify the optimal condition of the parameters in the natural convection heat transfer of Al2O3 nanofluid for a partially heated cavity. The flow and energy equations are solved by the lattice Boltzmann method. The influence of the 5 factors including Rayleigh number, position, hot length, cold length, volume concentration of the Al2O3 nanoparticles is examined. The Nusselt number on the hot section is measured for the response factor. In Taguchi optimization method, the levels of every factor were fixed at 3 levels and the L27 orthogonal array. The conclusions of the Taguchi–LBM technique indicated that the optimum conditions were attained at the maximum Rayleigh number, cold length and volume fraction and the minimum hot length in the bottom–bottom configuration in the variety of the design parameters. Also, the most significant parameter influencing the Nusselt number on the hot wall was the Rayleigh number, while changing the volume fraction had a negligible effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(C\) :

Lattice speed

\(C_{\text{p}}\) :

Specific heat

dB:

Decibel

DF :

Degrees of freedom

\(\vec{e}_{\text{i}}\) :

Velocity in discrete direction \(i\)

\(F\) :

F value

\(f_{\text{i}}\) :

Particle distribution function for velocity field

\(g_{\text{i}}\) :

Particle distribution function for thermal field

\(g_{\text{y}}\) :

Gravitational acceleration in the \(y\) direction

\(H\) :

Height and width of enclosure

\(\dot{B}_{\text{i}}\) :

Buoyant body force term

\(k_{\text{t}}\) :

Thermal conductivity

L :

Length

\(M\) :

Total number of discrete lattice directions

\(Ma\) :

Mach number

\({\text{MS}}\) :

Mean squares

\(n\) :

Number of case iteration

\(\vec{n}\) :

Outer normal unit vector

\(Nu\) :

Nusselt number

\(P\) :

Position

\(Pr\) :

Prandtl number

\(R\) :

Ideal gas constant

\(Ra\) :

Rayleigh number

\(\vec{r}\) :

Position vector

\(s\) :

Geometric distance

\({\text{SS}}\) :

Sums of squares

SNR:

Signal-to-noise ratio

T :

Temperature

\(\vec{u}\) :

Macroscopic velocity vector

\(x,y\) :

\(x\)- and \(y\)-coordinate system

t :

Time

\(X,Y\) :

Dimensionless coordinate of the 2D rectangular cavity

\(y_{\text{n}}\) :

Measured response

\(\alpha\) :

Thermal diffusion

\(\beta\) :

Coefficient of thermal expansion

\(\eta\) :

Value of predicted SNR

\(\theta\) :

Dimensionless temperature

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density

\(\tau_{\text{t}}\) :

Relaxation time for thermal field

\(\tau_{\upnu}\) :

Relaxation time for velocity field

\(\phi\) :

Volume fraction

\({\text{nf}}\) :

Nanofluid

\(C,H\) :

Cold, hot

\(i\) :

Index for the discrete direction

T :

Total

w :

Wall

p :

Particle

(eq):

Equilibrium

References

  1. Choi S, Estman J. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-FED. 1995;231:99–106.

    CAS  Google Scholar 

  2. Sobhani M, Behzadmehr A. Investigation of thermo-fluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement. Heat Mass Transf. 2018;54(11):3219–29.

    Article  CAS  Google Scholar 

  3. Gahrooei HRE, Ghazanfari MH. Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition. J Mol Liq. 2017;232:351–60.

    Article  CAS  Google Scholar 

  4. Vasilache V, Popa C, Filote C, Cretu MA, Benta M. Nanoparticles applications for improving the food safety and food processing. In: 7th international conference on materials science and engineering—BRAMAT Braşov, February 2011.

  5. Kabeel A, Omara Z, Essa F. Numerical investigation of modified solar still using nanofluids and external condenser. J. Taiwan Inst Chem Eng. 2017;75:77–86.

    Article  CAS  Google Scholar 

  6. Keyhani M, Prasad V, Cox R. An experimental study of natural convection in a vertical cavity with discrete heat sources. ASME J Heat Transf. 1988;110:616–24.

    Article  Google Scholar 

  7. Valencia A, Frederick RL. Heat transfer in square cavities with partially active vertical walls. Int J Heat Mass Transf. 1989;32(8):1567–74.

    Article  CAS  Google Scholar 

  8. da Silva AK, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a wall with natural convection. Int J Heat Mass Transf. 2004;47:203–14.

    Article  Google Scholar 

  9. Mahapatra PS, Manna NK, Ghosh K. Effect of active wall location in a partially heated enclosure. Int Commun Heat Mass Transf. 2015;61:69–77.

    Article  Google Scholar 

  10. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Article  Google Scholar 

  11. Aminossadati SM, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B Fluids. 2009;28(5):630–40.

    Article  Google Scholar 

  12. Aminossadati SM, Ghasemi B. Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source-sink. Int Commun Heat Mass Transf. 2011;38(5):672–8.

    Article  CAS  Google Scholar 

  13. Sheikhzadeh GA, Arefmanesh A, Kheirkhah MH, Abdollahi R. Natural convection of Cu–water nanofluid in a cavity with partially active side walls. Eur J Mech B Fluids. 2011;30(2):166–76.

    Article  Google Scholar 

  14. Jmai R, Ben-Beya B, Lili T. Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles. Superlattices Microstruct. 2013;53:130–54.

    Article  CAS  Google Scholar 

  15. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  16. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  CAS  Google Scholar 

  17. Krane RJ. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the first ASME-JSME thermal engineering joint conference, 1983. 1: pp. 323–329.

  18. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018;93:263–76.

    Article  CAS  Google Scholar 

  19. Abu-Nada E, Oztop HF. Numerical analysis of Al2O3/water nanofluids natural convection in a wavy walled cavity. Numer Heat Transf Part A Appl. 2011;59(5):403–19.

    Article  CAS  Google Scholar 

  20. Izadi M, Mohebbi R, Karimiand D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a ⊥ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56–66.

    Article  CAS  Google Scholar 

  21. Ranjbar P, Mohebbi R, Heidari H. Numerical investigation of nanofluids heat transfer in a channel consists of rectangular cavities by lattice Boltzmann method. Int J Mod Phys C. 2018;29(11):1–23.

    Article  CAS  Google Scholar 

  22. Matori A, Mohebbi R, Hashemi Z, Ma Y. Lattice Boltzmann study of multi-walled carbon nanotube (MWCNT)-Fe3O4/water hybrid nanofluids natural convection heat transfer in a Π-shaped cavity equipped by hot obstacle. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7881-8.

    Article  Google Scholar 

  23. Cho CC. Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface. Int J Heat Mass Transf. 2014;77:818–27.

    Article  CAS  Google Scholar 

  24. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69.

    Article  Google Scholar 

  25. Nazari M, Kayhani MH, Mohebbi R. Heat transfer enhancement in a channel partially filled with a porous block: lattice Boltzmann method. Int J Mod Phys C. 2013;24(09):1350060.

    Article  CAS  Google Scholar 

  26. Saglam M, Sarper B, Aydin O. Natural convection in an enclosure with a discretely heated sidewall: heatlines and flow visualization. J Appl Fluid Mech. 2018;11(1):271–84.

    Article  Google Scholar 

  27. Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123–34.

    Article  CAS  Google Scholar 

  28. Cheikh NB, Ben Beya B, Lili T. Influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below. Int Commun Heat Mass Transf. 2007;34(3):369–79.

    Article  Google Scholar 

  29. Abchouyeh MA, Mohebbi R, Fard OS. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018;29(09):1850079.

    Article  CAS  Google Scholar 

  30. Succi S. The lattice Boltzmann method for fluid dynamics and beyond. Oxford: Oxford University Press; 2001. p. 0.8.

    Google Scholar 

  31. Mohamad AA. Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Berlin: Springer; 2011.

    Book  Google Scholar 

  32. Lai FH, Yang YT. Lattice Boltzmann simulation of natural convection heat transfer of Al0O3/water nanofluids in a square enclosure. Int J Therm Sci. 2011;50(10):1930–41.

    Article  CAS  Google Scholar 

  33. Gangawane KM, Bharti RP, Kumar S. Effects of heating location and size on natural convection in partially heated Open-Ended enclosure by using Lattice Boltzmann method. Heat Transf Eng. 2016;37(6):507–22.

    Article  CAS  Google Scholar 

  34. Torabi M, Keyhani A, Peterson GP. A comprehensive investigation of natural convection inside a partially differentially heated cavity with a thin fin using two-set lattice Boltzmann distribution functions. Int J Heat Mass Transf. 2017;115:264–77.

    Article  Google Scholar 

  35. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7518-y.

    Article  Google Scholar 

  36. Sidik NAC, Razali SA. Lattice Boltzmann method for convective heat transfer of nanofluids—a review. Renew Sustain Energy Rev. 2014;38:864–75.

    Article  CAS  Google Scholar 

  37. Zhang DD, Wang L, Liu D, Zhao FY, Wang HQ. Free convective energy management of an inclined enclosure mounted with triple heating elements: multiple morphology optimizations with unique global energy supply. Int J Heat Mass Transf. 2017;115:406–20.

    Article  Google Scholar 

  38. Soleimani S, Ganji DD, Gorji M, Bararnia H, Ghasemi E. Optimal location of a pair heat source-sink in an enclosed square cavity with natural convection through PSO algorithm. Int Commun Heat Mass Transf. 2011;38(5):652–8.

    Article  Google Scholar 

  39. Kadiyala PK, Chattopadhyay H. Optimal location of three heat sources on the wall of a square cavity using genetic algorithms integrated with artificial neural networks. Int Commun Heat Mass Transf. 2011;38(5):620–4.

    Article  Google Scholar 

  40. Dias T Jr, Milanez LF. Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms. Int J Heat Mass Transf. 2006;49(13–14):2090–6.

    Article  Google Scholar 

  41. Shirvan KM, Öztop HF, Al-Salem K. Mixed magnetohydrodynamic convection in a Cu-water-nanofluid-filled ventilated square cavity using the Taguchi method: a numerical investigation and optimization. Eur Phys J Plus. 2017;132(5):204.

    Article  CAS  Google Scholar 

  42. Katata-Seru L, Lebepe TC, Aremu OS, Bahadur I. Application of Taguchi method to optimize garlic essential oil nanoemulsions. J Mol Liq. 2017;244:279–84.

    Article  CAS  Google Scholar 

  43. Chou CS, Ho CY, Huang CI. The optimum conditions for comminution of magnetic particles driven by a rotating magnetic field using the Taguchi method. Adv Powder Technol. 2009;20(1):55–61.

    Article  CAS  Google Scholar 

  44. Gune S, Senyigit E, Karakaya E, Ozceyhan V. Optimization of heat transfer and pressure drop in a tube with loose-fit perforated twisted tapes by Taguchi method and grey relational analysis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7824-4.

    Article  Google Scholar 

  45. Abadeh A, Passandideh-Fard M, Maghrebi MJ, Mohammadi M. Stability and magnetization of Fe3O4/water nanofluid preparation characteristics using Taguchi method. J Therm Anal Calorim. 2019;135(2):1323–34.

    Article  CAS  Google Scholar 

  46. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  47. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  48. Sheikholeslami M, Ganji D. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77.

    Article  CAS  Google Scholar 

  49. Dixit H, Babu V. Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf. 2006;49(3):727–39.

    Article  Google Scholar 

  50. Sobhani M, Tighchi HA, Esfahani JA. Taguchi optimization of combined radiation/natural convection of participating medium in a cavity with a horizontal fin using LBM. Phys A Stat Mech Appl. 2018;509:1062–79.

    Article  CAS  Google Scholar 

  51. Taguchi G, Elsayed EA, Hsiang TC. Quality engineering in production systems, vol. 173. New York: McGraw-Hill; 1989.

    Google Scholar 

  52. Bhalla V, Khullar V, Tyagi H. Investigation of factors influencing the performance of nanofluid-based direct absorption solar collector using Taguchi method. J Therm Anal Calorim. 2019;135(2):1493–505.

    Article  CAS  Google Scholar 

  53. Taguchi G. Taguchi techniques for quality engineering. New York: Quality Resources; 1987.

    Google Scholar 

  54. Li X, Wang Z, Huang L. Study of vibration characteristics for orthotropic circular cylindrical shells using wave propagation approach and multivariate analysis. Meccanica. 2017;52(10):2349–61.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Ferdowsi University of Mashhad, Mashhad, Iran, for their support and funding (No. 47970) provided for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ajam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, M., Ajam, H. Taguchi optimization for natural convection heat transfer of Al2O3 nanofluid in a partially heated cavity using LBM. J Therm Anal Calorim 138, 889–904 (2019). https://doi.org/10.1007/s10973-019-08170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08170-3

Keywords

Navigation