Skip to main content
Log in

The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flame retardant-modified sepiolite nanofiber (PSPHD-SEP) was fabricated through chemical grafting by introducing intumescent flame retardant oligomer (PSPHD) onto the surface of sepiolite fiber. Various sepiolite/low-density polyethylene (SEP/LDPE) composites have been prepared successfully via melt blending. The dispersion of various SEPs in LDPE matrix was observed by scanning electron microscope and transmission electron microscope. The thermal degradation behaviors of various SEP/LDPE composites with 3 mass% acid-modified sepiolite fiber (a-SEP) or PSPHD-SEP have been investigated employing thermogravimetric analysis/derivative thermogravimetry. The thermal degradation kinetics of neat LDPE, a-SEP/LDPE and PSPHD-SEP/LDPE systems was comparatively analyzed by means of Friedman and Flynn–Wall–Ozawa methods to further comprehend the effect of a-SEP and PSPHD-SEP on the thermal stability of LDPE. Due to the addition of PSPHD-SEP, the limiting oxygen index value of PSPHD-SEP/LDPE composite can reach 21.3%, and the UL-94V-2 rating is obtained. The cone calorimetry (CONE) tests showed that a reduced peak heat release rate can be achieved for PSPHD-SEP/LDPE composite accompanying with gas-phase fire retardant action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu ZP, Hu YC, Shu WY. Effect of ultrafine zinc borate on the smoke suppression and toxicity reduction of a low-density polyethylene/intumescent flame-retardant system. J Appl Polym Sci. 2010;117(1):443–9.

    Article  CAS  Google Scholar 

  2. Liao SF, Deng C, Huang SC, Cao JY, Wang YZ. An efficient halogen-free flame retardant for polyethylene: piperazine-modified ammonium polyphosphates with different structures. Chin J Polym Sci. 2016;34(11):1339–53.

    Article  CAS  Google Scholar 

  3. Wang PJ, Hu XP, Liao DJ, Wen Y, Hull TR, Miao F, Zhang QT. Dual fire retardant action: the combined gas and condensed phase effects of azo-modified NiZnAl layered double hydroxide on intumescent polypropylene. Ind Eng Chem Res. 2017;56(4):920–32.

    Article  CAS  Google Scholar 

  4. Wang DY, Liu Y, Ge XG, Wang YZ, Stec A, Biswas B, Hull TR, Price D. Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polym Degrad Stab. 2008;93(5):1024–30.

    Article  CAS  Google Scholar 

  5. Chen L, Wang YZ. A review on flame retardant technology in China. Part I: development of flame retardants. Polym Adv Technol. 2010;21(1):1–26.

    Article  Google Scholar 

  6. Weil ED, Levchik SV. Flame retardants in commercial use or development for polyolefins. J Fire Sci. 2008;26(1):5–43.

    Article  CAS  Google Scholar 

  7. Wang Q, Undrell JP, Gao YS, Cai GP, Buffet JC, Wilkie CA, O’Hare D. Synthesis of flame-retardant polypropylene/LDH-borate nanocomposites. Macromolecules. 2013;46(15):6145–50.

    Article  CAS  Google Scholar 

  8. Hollingbery LA, Hull TR. The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab. 2010;95(12):2213–25.

    Article  CAS  Google Scholar 

  9. Wang DY, Das A, Leuteritz A, Boldt R, Häuβler L, Wagenknecht U, Heinrich G. Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co–Al layered double hydroxide. Polym Degrad Stab. 2011;96(3):285–90.

    Article  CAS  Google Scholar 

  10. Wang X, Kalali EN, Wan JT, Wang DY. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017;69:22–46.

    Article  CAS  Google Scholar 

  11. Hu WZ, Zhan J, Wang X, Hong NN, Wang BB, Song L, Stec AA, Hull TR, Wang J, Hu Y. Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res. 2014;53(8):3073-83.

    Article  CAS  Google Scholar 

  12. Bitinis N, Hernandez M, Verdejo R, Kenny JM, Lopez-Manchado MA. Recent advances in clay/polymer nanocomposites. Adv Mater. 2011;23(44):5229–36.

    Article  CAS  PubMed  Google Scholar 

  13. Dumazert L, Rasselet D, Pang B, Gallard B, Kennouche S, Lopez-Cuesta JM. Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polym Adv Technol. 2018;29:69–83.

    Article  CAS  Google Scholar 

  14. Tang G, Deng D, Chen J, Zhou KQ, Zhang H, Huang XJ, Zhou ZJ. The influence of organo-modified sepiolite on the flame-retardant and thermal properties of intumescent flame-retardant polylactide composites. J Therm Anal Calorim. 2017;130(2):763–72.

    Article  CAS  Google Scholar 

  15. Palacios E, Leret P, De La Mata MJ, Fernández JF, De Aza AH, Rodríguez MA, Rubio-Marcos F. Self-forming 3D core-shell ceramic nanostructures for halogen-free flame retardant materials. ACS Appl Mater Interfaces. 2016;8(14):9462–71.

    Article  CAS  PubMed  Google Scholar 

  16. Zhan ZS, Xu MJ, Li B. Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites. Polym Degrad Stab. 2015;117:66–74.

    Article  CAS  Google Scholar 

  17. Zhang QT, Li SX, Hu XP, Wang PJ, Zeng JB, Wang XL, Wang YZ. Structure, morphology, and properties of LDPE/sepiolite nanofiber nanocomposite. Polym Adv Technol. 2017;28:958–64.

    Article  CAS  Google Scholar 

  18. Li SX, Hu XP, Wang YZ, Xie CQ, He XC. Preparation, structure and properties of sepiolite fiber by flame retardancy modification. Acta Mater Compos Sin. 2012;29(1):73–8.

    Google Scholar 

  19. Sun YJ, Gao M, Chai ZH, Wang H. Thermal behavior of the flexible polyvinyl chloride including montmorillonite modified with iron oxide as flame retardant. J Therm Anal Calorim. 2018;131(1):65–70.

    Article  CAS  Google Scholar 

  20. Wang W, Peng Y, Dong YM, Wang KL, Li JZ, Zhang W. Effect of coupling agent modified intumescent flame retardant on the mechanical properties, thermal degradation behavior, and flame retardancy of wood-flour/polypropylene composites. Polym Compos. 2018;39(3):826–34.

    Article  CAS  Google Scholar 

  21. Liu DY, Zhao B, Wang JS, Liu PW, Liu YQ. Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam. J Appl Polym Sci. 2018;135:46434.

    Article  CAS  Google Scholar 

  22. Liu JC, Zhang YB, Guo YB, Lu C, Pan BL, Peng SG, Ma JY, Niu QS. Effect of carbon black on the thermal degradation and flammability properties of flame-retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym Compos. 2018;39:770–82.

    Article  CAS  Google Scholar 

  23. Ho TH, Leu TS, Sun YM, Shieh JY. Thermal degradation kinetics and flame retardancy of phosphorus-containing dicyclopentadiene epoxy resins. Polym Degrad Stab. 2006;91(10):2347–56.

    Article  CAS  Google Scholar 

  24. Guo JB, Wang M, Li LT, Wang J, He WD, Chen XL. Effects of thermal-oxidative aging on the flammability, thermal degradation kinetics and mechanical properties of DBDPE flame retardant long glass fiber reinforced polypropylene composites. Polym Compos. 2018;39:1733–41.

    Article  CAS  Google Scholar 

  25. Ozawa T. Kinetics in differential thermal analysis. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  26. Friedman HL. Kinetics of thermal degradation of char-forming plastic from thermogravimetry. J Polym Sci, Part C: Polym Symp. 1964;6(1):183–95.

    Article  Google Scholar 

  27. Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrol. 2005;73(1):131–8.

    Article  CAS  Google Scholar 

  28. Marcilla A, Gómez A, Menargues S, Ruiz R. Pyrolysis of polymers in the presence of a commercial clay. Polym Degrad Stab. 2005;88(3):456–60.

    Article  CAS  Google Scholar 

  29. Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C. 2009;29(4):1433–41.

    Article  CAS  Google Scholar 

  30. Mallakpour S, Dinari M, Talebi M. Novel nanocomposites obtained by dispersion of LDH modified with N-tetrabromophthaloyl-glutamic in poly(amide-imide) having N-trimellityli-mido-l-leucine and 4,4′-diaminodiphenylether units. Polym Compos. 2016;37(5):1323–9.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Dranca I, Fan XW, Advincula R. Degradation and relaxation kinetics of polystyrene-clay nanocomposite prepared by surface initiated polymerization. J Phys Chem B. 2004;108(31):11672–9.

    Article  CAS  Google Scholar 

  32. Tartaglione G, Tabuani D, Camino G, Moisio M. PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Compos Sci Technol. 2008;68(2):451–60.

    Article  CAS  Google Scholar 

  33. Lu C, Gao XP, Yao DH, Cao CL, Luo YJ. Improving flame retardancy of linear low-density polyethylene/nylon 6 blends via controlling localization of clay and intumescent flame-retardant. Polym Degrad Stab. 2018;153:75–87.

    Article  CAS  Google Scholar 

  34. Nie SB, Qi SH, He MS, Li BX. Synergistic effects of zeolites on a novel intumescent flame-retardant low-density polyethylene (LDPE) system. J Therm Anal Calorim. 2013;114(2):581–7.

    Article  CAS  Google Scholar 

  35. Kim H, Park JW, Lee JH, Jang SW, Kim HJ, Choi Y, Choy JH, Yang JH. Clay-organic intumescent hybrid system for the synergetic flammability of polymer nanocomposites. J Therm Anal Calorim. 2018;132(3):2009–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (50973091; 51673160) and The Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (18zxhk15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, S., Cheng, Z. et al. The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene. J Therm Anal Calorim 138, 1011–1019 (2019). https://doi.org/10.1007/s10973-019-08162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08162-3

Keywords

Navigation