Skip to main content
Log in

A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Intelligence methods, including Artificial Neural Networks (ANNs) and Support Vector Machine, are among the popular approaches for modeling the engineering systems with high accuracy. Nanofluid’s thermal conductivity depends on several factors such as the dimensions of nanoparticles, their concentration, synthesis method and temperature. Intelligence methods are appropriate tools to precisely estimate nanofluids’ thermal conductivity. Different methods and structures are used for the modeling of this property. In the present article, the related studies, using intelligence methods in thermal conductivity estimation, are comprehensively reviewed. According to the literature review, the accuracy of the predictive models has an association with their structure, utilized functions, selected input variables and employed algorithm. For instance, compared with mathematical correlations, obtained by curve fitting, ANNs are more accurate. Moreover, it is concluded that the structure of the NN, including numbers of hidden layer and neurons, can noticeably influence their performance. In the reviewed articles, trial and error are performed to distinguish the most favorable structure of ANNs. Due to the dependency of the models on the input variable, considering all the factors affecting the nanofluid’s thermal conductivity results in higher precision of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Mohammadi M, Mohammadi M, Shafii MB. Experimental investigation of a pulsating heat pipe using ferrofluid (magnetic nanofluid). J Heat Transf. 2012;134:014504. https://doi.org/10.1115/1.4004805.

    Article  CAS  Google Scholar 

  2. Aboutalebi M, Nikravan Moghaddam AM, Mohammadi N, Shafii MB. Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int Commun Heat Mass Transf. 2013;45:137–45. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.008.

    Article  Google Scholar 

  3. Mohammadi M, Taslimifar M, Haghayegh S, Hannani SK, Shafii MB, Saidi MH, et al. Open-loop pulsating heat pipes charged with magnetic nanofluids: powerful candidates for future electronic coolers. Nanoscale Microscale Thermophys Eng. 2014;18:18–38. https://doi.org/10.1080/15567265.2013.787570.

    Article  CAS  Google Scholar 

  4. Ghasemi N, Maddah H, Mohebbi M, Aghayari R, Rohani S. Proposing a method for combining monitored multilayered perceptron (MLP) and self-organizing map (SOM) neural networks in prediction of heat transfer parameters in a double pipe heat exchanger with nanofluid. Heat Mass Transf. 2019. https://doi.org/10.1007/s00231-019-02576-3.

    Article  Google Scholar 

  5. Alirezaie A, Hajmohammad MH, Hassani Ahangar MR, Hemmat Esfe M. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Appl Therm Eng. 2018;128:373–80. https://doi.org/10.1016/J.APPLTHERMALENG.2017.08.143.

    Article  CAS  Google Scholar 

  6. Tafarroj MM, Daneshazarian R, Kasaeian A. CFD modeling and predicting the performance of direct absorption of nanofluids in trough collector. Appl Therm Eng. 2019;148:256–69. https://doi.org/10.1016/J.APPLTHERMALENG.2018.11.020.

    Article  CAS  Google Scholar 

  7. Ahmadi MH, Mirlohi A, Alhuyi Nazari M, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–8. https://doi.org/10.1016/J.MOLLIQ.2018.05.124.

    Article  CAS  Google Scholar 

  8. Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia. 2017;109:417–24. https://doi.org/10.1016/J.EGYPRO.2017.03.044.

    Article  CAS  Google Scholar 

  9. Sureshkumar R, Mohideen ST, Nethaji N. Heat transfer characteristics of nanofluids in heat pipes: a review. Renew Sustain Energy Rev. 2013;20:397–410. https://doi.org/10.1016/J.RSER.2012.11.044.

    Article  CAS  Google Scholar 

  10. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Açıkkalp E. Application of nanofluids in thermosyphons: a review. J Mol Liq. 2018;272:395–402. https://doi.org/10.1016/J.MOLLIQ.2018.09.101.

    Article  CAS  Google Scholar 

  11. Khanafer K, Vafai K. Applications of nanofluids in porous medium. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7565-4.

    Article  Google Scholar 

  12. Alhuyi Nazari M, Ahmadi MH, Lorenzini G, Maddah H, Fahim Alavi M, Ghasempour R. Modeling thermal conductivity ratio of CuO/ethylene glycol nanofluid by using artificial neural network. Defect Diffus Forum. 2018;388:39–43. https://doi.org/10.4028/www.scientific.net/DDF.388.39.

    Article  Google Scholar 

  13. Sundar LS, Singh MK, Ramana EV, Singh B, Grácio J, Sousa ACM. Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci Rep. 2015;4:4039. https://doi.org/10.1038/srep04039.

    Article  CAS  Google Scholar 

  14. Alhuyi Nazari M, Ahmadi MH, Ghasempour R, Shafii MB. How to improve the thermal performance of pulsating heat pipes: a review on working fluid. Renew Sustain Energy Rev. 2018;91:630–8.

    Article  CAS  Google Scholar 

  15. Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf. 2018;91:90–4. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.006.

    Article  CAS  Google Scholar 

  16. Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017;116:56–65. https://doi.org/10.1016/J.APPLTHERMALENG.2017.01.068.

    Article  CAS  Google Scholar 

  17. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7183-1.

    Article  Google Scholar 

  18. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2019;790:1–48. https://doi.org/10.1016/J.PHYSREP.2018.11.004.

    Article  CAS  Google Scholar 

  19. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59. https://doi.org/10.1016/J.PHYSREP.2018.11.003.

    Article  CAS  Google Scholar 

  20. Abdullah AA, Althobaiti SA, Lindsay KA. Marangoni convection in water–alumina nanofluids: dependence on the nanoparticle size. Eur J Mech B Fluids. 2018;67:259–68. https://doi.org/10.1016/J.EUROMECHFLU.2017.09.015.

    Article  Google Scholar 

  21. Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf Physicochem Eng Asp. 2010;355:109–13. https://doi.org/10.1016/j.colsurfa.2009.11.044.

    Article  CAS  Google Scholar 

  22. Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A Physicochem Eng Asp. 2009;352:136–40. https://doi.org/10.1016/j.colsurfa.2009.10.015.

    Article  CAS  Google Scholar 

  23. Zhu D, Wang L, Yu W, Xie H. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep. 2018;8:5282. https://doi.org/10.1038/s41598-018-23174-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hemmat Esfe M, Hajmohammad MH, Sina N, Afrand M. Optimization of thermophysical properties of Al2O3/water–EG (80:20) nanofluids by NSGA-II. Physica E. 2018;103:264–72. https://doi.org/10.1016/J.PHYSE.2018.05.031.

    Article  CAS  Google Scholar 

  25. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, Chau K. Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comput Fluid Mech. 2019;13:40–7. https://doi.org/10.1080/19942060.2018.1518272.

    Article  Google Scholar 

  26. Alirezaie A, Saedodin S, Esfe MH, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO—engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81. https://doi.org/10.1016/J.MOLLIQ.2017.05.121.

    Article  CAS  Google Scholar 

  27. Hemmat Esfe M, Reiszadeh M, Esfandeh S, Afrand M. Optimization of MWCNTs (10%)–Al2O3 (90%)/5W50 nanofluid viscosity using experimental data and artificial neural network. Phys A. 2018;512:731–44. https://doi.org/10.1016/J.PHYSA.2018.07.040.

    Article  CAS  Google Scholar 

  28. Aminian A. Predicting the effective viscosity of nanofluids for the augmentation of heat transfer in the process industries. J Mol Liq. 2017;229:300–8. https://doi.org/10.1016/J.MOLLIQ.2016.12.071.

    Article  CAS  Google Scholar 

  29. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO–MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E. 2016;84:564–70. https://doi.org/10.1016/J.PHYSE.2016.06.015.

    Article  CAS  Google Scholar 

  30. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7035-z.

    Article  Google Scholar 

  31. Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Abbasian Arani AA, et al. Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transf. 2017;82:154–60. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.08.015.

    Article  CAS  Google Scholar 

  32. Maddah H, Aghayari R, Ahmadi MH, Rahimzadeh M, Ghasemi N. Prediction and modeling of MWCNT/Carbon (60/40)/SAE 10 W 40/SAE 85 W 90(50/50) nanofluid viscosity using artificial neural network (ANN) and self-organizing map (SOM). J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7827-1.

    Article  Google Scholar 

  33. Al-Waeli AHA, Sopian K, Kazem HA, Yousif JH, Chaichan MT, Ibrahim A, et al. Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol Energy. 2018;162:378–96. https://doi.org/10.1016/J.SOLENER.2018.01.026.

    Article  CAS  Google Scholar 

  34. Pierantozzi M, Petrucci G. Modeling thermal conductivity in refrigerants through neural networks. Fluid Phase Equilib. 2018;460:36–44. https://doi.org/10.1016/J.FLUID.2017.12.027.

    Article  CAS  Google Scholar 

  35. Vakili M, Karami M, Delfani S, Khosrojerdi S. Experimental investigation and modeling of thermal radiative properties of f-CNTs nanofluid by artificial neural network with Levenberg–Marquardt algorithm. Int Commun Heat Mass Transf. 2016;78:224–30. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.09.011.

    Article  CAS  Google Scholar 

  36. Derakhshanfard F, Mehralizadeh A. Application of artificial neural networks for viscosity of crude oil-based nanofluids containing oxides nanoparticles. J Pet Sci Eng. 2018;168:263–72. https://doi.org/10.1016/J.PETROL.2018.05.018.

    Article  CAS  Google Scholar 

  37. Ebrahimi-Moghadam A, Mohseni-Gharyehsafa B, Farzaneh-Gord M. Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3–EG/W nanofluid flow inside parabolic trough solar collector. Renew Energy. 2018;129:473–85. https://doi.org/10.1016/J.RENENE.2018.06.023.

    Article  CAS  Google Scholar 

  38. Pierantozzi M, Di Nicola G, Latini G, Coccia G. Artificial neural network modelling of liquid thermal conductivity for alcohols. Phys Chem Liq. 2018;56:363–80. https://doi.org/10.1080/00319104.2017.1341980.

    Article  CAS  Google Scholar 

  39. Ahmadi MA, Ebadi M, Shokrollahi A, Majidi SMJ. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl Soft Comput. 2013;13:1085–98. https://doi.org/10.1016/J.ASOC.2012.10.009.

    Article  Google Scholar 

  40. Ahmadi MH, Ahmadi MA, Mehrpooya M, Rosen MA. Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability. 2015;7:2243–55. https://doi.org/10.3390/su7022243.

    Article  Google Scholar 

  41. Rezaei MH, Sadeghzadeh M, Alhuyi Nazari M, Ahmadi MH, Astaraei FR. Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. Int J Low Carb Technol. 2018. https://doi.org/10.1093/ijlct/cty026.

    Article  Google Scholar 

  42. Ahmadi MH, Tatar A, Alhuyi Nazari M, Ghasempour R, Chamkha AJ, Yan W-M. Applicability of connectionist methods to predict thermal resistance of pulsating heat pipes with ethanol by using neural networks. Int J Heat Mass Transf. 2018;126:1079–86. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.085.

    Article  CAS  Google Scholar 

  43. Baghban A, Jalali A, Shafiee M, Ahmadi MH, Chau K. Developing an ANFIS-based swarm concept model for estimating the relative viscosity of nanofluids. Eng Appl Comput Fluid Mech. 2019;13:26–39. https://doi.org/10.1080/19942060.2018.1542345.

    Article  Google Scholar 

  44. Mohamadian F, Eftekhar L, Haghighi Bardineh Y. Applying GMDH artificial neural network to predict dynamic viscosity of an antimicrobial nanofluid. Nanomed J. 2018;5:217–21. https://doi.org/10.22038/NMJ.2018.05.00005.

    Article  CAS  Google Scholar 

  45. Sheikholeslami M, Bani Sheykholeslami F, Khoshhal S, Mola-Abasia H, Ganji DD, Rokni HB. Effect of magnetic field on Cu–water nanofluid heat transfer using GMDH-type neural network. Neural Comput Appl. 2014;25:171–8. https://doi.org/10.1007/s00521-013-1459-y.

    Article  Google Scholar 

  46. Kasaeian A, Ghalamchi M, Ahmadi MH, Ghalamchi M. GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature. Mech Ind. 2017;18:216. https://doi.org/10.1051/meca/2016034.

    Article  Google Scholar 

  47. Beigzadeh M, Pourfayaz F, Ahmadi MH, Pourkiaei SM, Beigzadeh M. A simplificative approach-based modeling of SOFC power systems fed by natural gas. Fuel Cells. 2017. https://doi.org/10.1002/fuce.201700015.

    Article  Google Scholar 

  48. Pourkiaei SM, Ahmadi MH, Hasheminejad SM. Modeling and experimental verification of a 25 W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech Ind. 2016;17:105. https://doi.org/10.1051/meca/2015050.

    Article  CAS  Google Scholar 

  49. Sadi M. Prediction of thermal conductivity and viscosity of ionic liquid-based nanofluids using adaptive neuro fuzzy inference system. Heat Transf Eng. 2017;38:1561–72. https://doi.org/10.1080/01457632.2016.1262720.

    Article  CAS  Google Scholar 

  50. Bishop CM. Pattern recognition and machine learning. Berlin: Springer; 2006.

    Google Scholar 

  51. Baghban A, Pourfayaz F, Ahmadi MH, Kasaeian A, Pourkiaei SM, Lorenzini G. Connectionist intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional channels. J Therm Anal Calorim. 2018;132:1213–39. https://doi.org/10.1007/s10973-017-6886-z.

    Article  CAS  Google Scholar 

  52. Sadatsakkak SA, Ahmadi MH, Ahmadi MA. Implementation of artificial neural-networks to model the performance parameters of Stirling engine. Mech Ind. 2016;17:307. https://doi.org/10.1051/meca/2015062.

    Article  CAS  Google Scholar 

  53. Fadaei N, Yan W-M, Mahdi Tafarroj M, Kasaeian A. The application of artificial neural networks to predict the performance of solar chimney filled with phase change materials. Energy Convers Manag. 2018;171:1255–62. https://doi.org/10.1016/J.ENCONMAN.2018.06.055.

    Article  Google Scholar 

  54. Moghadam M, Asgharzadeh S. On the application of artificial neural network for modeling liquid-liquid equilibrium. J Mol Liq. 2016;220:339–45. https://doi.org/10.1016/j.molliq.2016.04.098.

    Article  CAS  Google Scholar 

  55. Sebasti RCO, Braga JP, Yoshida MI. Artificial neural network applied to solid state thermal decomposition. J Therm Anal Calorim. 2003;74:811–8.

    Article  Google Scholar 

  56. Loni R, Asli-Ardeh EA, Ghobadian B, Ahmadi MH, Bellos E. GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using MWCNT/oil nanofluid. Sol Energy. 2018;171:790–803. https://doi.org/10.1016/J.SOLENER.2018.07.003.

    Article  CAS  Google Scholar 

  57. Ahmadi MH, Ahmadi MA, Ashouri M, Razie Astaraei F, Ghasempour R, Aloui F. Prediction of performance of Stirling engine using least squares support machine technique. Mech Ind. 2016;17:506. https://doi.org/10.1051/meca/2015098.

    Article  CAS  Google Scholar 

  58. Baghban A, Kahani M, Nazari MA, Ahmadi MH, Yan W-M. Sensitivity analysis and application of machine learning methods to predict the heat transfer performance of CNT/water nanofluid flows through coils. Int J Heat Mass Transf. 2019;128:825–35. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.09.041.

    Article  CAS  Google Scholar 

  59. Suykens JAK. Least squares support vector machines. Singapore: World Scientific; 2002. https://doi.org/10.1142/5089.

    Book  Google Scholar 

  60. Ahmadi MA, Mahmoudi B. Development of robust model to estimate gas–oil interfacial tension using least square support vector machine: experimental and modeling study. J Supercrit Fluids. 2016;107:122–8. https://doi.org/10.1016/J.SUPFLU.2015.08.012.

    Article  CAS  Google Scholar 

  61. van Gestel T, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, et al. Benchmarking least squares support vector machine classifiers. Mach Learn. 2004;54:5–32. https://doi.org/10.1023/B:MACH.0000008082.80494.e0.

    Article  Google Scholar 

  62. Ahmadi MA, Ebadi M. Evolving smart approach for determination dew point pressure through condensate gas reservoirs. Fuel. 2014;117:1074–84. https://doi.org/10.1016/J.FUEL.2013.10.010.

    Article  CAS  Google Scholar 

  63. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. https://doi.org/10.1007/BF00994018.

    Article  Google Scholar 

  64. Pelckmans K, Suykens J, Gestel T, Brabanter J, Lukas L, Hamers B, Moor B, Vandewalle J. A Matlab/c toolbox for least square support vector machines. ESATSCD-SISTA Technical Report (2002);02–145.

  65. Ahmadi M-A, Bahadori A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells. Fuel. 2015;153:276–83. https://doi.org/10.1016/J.FUEL.2015.02.094.

    Article  CAS  Google Scholar 

  66. Baghban A, Kardani MN, Habibzadeh S. Prediction viscosity of ionic liquids using a hybrid LSSVM and group contribution method. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.2017.04.019.

    Article  Google Scholar 

  67. Ramezanizadeh M, Ahmadi MA, Ahmadi MH, Alhuyi Nazari M. Rigorous smart model for predicting dynamic viscosity of Al2O3/water nanofluid. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7916-1.

    Article  Google Scholar 

  68. Hemmat Esfe M, Yan W-M, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)–ethylene glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.02.002.

    Article  CAS  Google Scholar 

  69. Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10. https://doi.org/10.1016/J.APPLTHERMALENG.2016.09.091.

    Article  CAS  Google Scholar 

  70. Huminic G, Huminic A. Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Convers Manag. 2013;76:393–9. https://doi.org/10.1016/j.enconman.2013.07.026.

    Article  CAS  Google Scholar 

  71. Xing M, Yu J, Wang R. Performance of a vertical closed pulsating heat pipe with hydroxylated MWNTs nanofluid. Int J Heat Mass Transf. 2017;112:81–8. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.04.112.

    Article  CAS  Google Scholar 

  72. Gunnasegaran P, Abdullah MZ, Shuaib NH. Influence of nanofluid on heat transfer in a loop heat pipe. Int Commun Heat Mass Transf. 2013;47:82–91. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2013.07.003.

    Article  CAS  Google Scholar 

  73. Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng. 2013;1:38–44. https://doi.org/10.1016/J.CSITE.2013.08.004.

    Article  Google Scholar 

  74. Ravi Kumar NT, Bhramara P, Addis BM, Sundar LS, Singh MK, Sousa ACM. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transf. 2017;81:155–63. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.12.019.

    Article  CAS  Google Scholar 

  75. Aramesh M, Pourfayaz F, Kasaeian A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol Energy. 2017;157:869–79. https://doi.org/10.1016/J.SOLENER.2017.09.011.

    Article  CAS  Google Scholar 

  76. Amin TE, Roghayeh G, Fatemeh R, Fatollah P. Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency. Energy Explor Exploit. 2015;33:659–76. https://doi.org/10.1260/0144-5987.33.5.659.

    Article  Google Scholar 

  77. Ranjbarzadeh R, Kazerouni AM, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: eco-friendly production of nanoparticles. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2018.09.205.

    Article  Google Scholar 

  78. Hemmat Esfe M, Rostamian H, Esfandeh S, Afrand M. Modeling and prediction of rheological behavior of Al2O3–MWCNT/5W50 hybrid nano-lubricant by artificial neural network using experimental data. Phys A. 2018;510:625–34. https://doi.org/10.1016/J.PHYSA.2018.06.041.

    Article  CAS  Google Scholar 

  79. Eshgarf H, Sina N, Esfe MH, Izadi F, Afrand M. Prediction of rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian hybrid nanofluid by designing new correlations and optimal artificial neural networks. J Therm Anal Calorim. 2018;132:1029–38. https://doi.org/10.1007/s10973-017-6895-y.

    Article  CAS  Google Scholar 

  80. Hemmat Esfe M, Afrand M, Yan W-M, Akbari M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int Commun Heat Mass Transf. 2015;66:246–9. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.002.

    Article  CAS  Google Scholar 

  81. Ghasemi A, Hassani M, Goodarzi M, Afrand M, Manafi S. Appraising influence of COOH–MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network. Phys A. 2019;514:36–45. https://doi.org/10.1016/J.PHYSA.2018.09.004.

    Article  CAS  Google Scholar 

  82. Hemmat Esfe M, Afrand M, Wongwises S, Naderi A, Asadi A, Rostami S, et al. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int Commun Heat Mass Transf. 2015;67:46–50. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.06.015.

    Article  CAS  Google Scholar 

  83. Afrand M, Hemmat Esfe M, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Physica E. 2017;87:242–7. https://doi.org/10.1016/j.physe.2016.10.020.

    Article  CAS  Google Scholar 

  84. Ahmadi MH, Hajizadeh F, Rahimzadeh M, Shafii MB, Chamkha AJ. Application GMDH artificial neural network for modeling of Al2O3/water and Al2O3/Ethylene glycol thermal conductivity. Int J Heat Technol. 2018;36:773–82.

    Article  Google Scholar 

  85. Sharifpur M, Ntumba T, Meyer JP. Parametric analysis of effective thermal conductivity models for nanofluids. vol 9 Micro-Nano-Systems Engineering Package Parts A B, ASME; 2012, p. 1. https://doi.org/10.1115/imece2012-85093.

  86. Ariana MA, Vaferi B, Karimi G. Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technol. 2015;278:1–10. https://doi.org/10.1016/j.powtec.2015.03.005.

    Article  CAS  Google Scholar 

  87. Hemmat Esfe M, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.013.

    Article  CAS  Google Scholar 

  88. Aminian A. Predicting the effective thermal conductivity of nanofluids for intensification of heat transfer using artificial neural network. Powder Technol. 2016;301:288–309. https://doi.org/10.1016/j.powtec.2016.05.040.

    Article  CAS  Google Scholar 

  89. Longo GA, Zilio C, Ceseracciu E, Reggiani M. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids. Nano Energy. 2012;1:290–6. https://doi.org/10.1016/J.NANOEN.2011.11.007.

    Article  CAS  Google Scholar 

  90. Hemmat Esfe M, Motahari K, Sanatizadeh E, Afrand M, Rostamian H, Reza Hassani Ahangar M. Estimation of thermal conductivity of CNTs–water in low temperature by artificial neural network and correlation. Int Commun Heat Mass Transf. 2016;76:376–81. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.012.

    Article  CAS  Google Scholar 

  91. Tahani M, Vakili M, Khosrojerdi S. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int Commun Heat Mass Transf. 2016;76:358–65. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.06.003.

    Article  CAS  Google Scholar 

  92. Khosrojerdi S, Vakili M, Yahyaei M, Kalhor K. Thermal conductivity modeling of graphene nanoplatelets/deionized water nanofluid by MLP neural network and theoretical modeling using experimental results. Int Commun Heat Mass Transf. 2016;74:11–7. https://doi.org/10.1016/j.icheatmasstransfer.2016.03.010.

    Article  CAS  Google Scholar 

  93. Hemmat Esfe M, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;68:98–103. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.015.

    Article  CAS  Google Scholar 

  94. Ahmadi M-A, Ahmadi MH, Fahim Alavi M, Nazemzadegan MR, Ghasempour R, Shamshirband S. Determination of thermal conductivity ratio of CuO/ethylene glycol nanofluid by connectionist approach. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.06.003.

    Article  Google Scholar 

  95. Hemmat Esfe M, Rostamian H, Toghraie D, Yan W-M. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126:643–8. https://doi.org/10.1007/s10973-016-5506-7.

    Article  CAS  Google Scholar 

  96. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94. https://doi.org/10.1007/s10973-014-4002-1.

    Article  CAS  Google Scholar 

  97. Bahiraei M, Hangi M. An empirical study to develop temperature-dependent models for thermal conductivity and viscosity of water–Fe3O4 magnetic nanofluid. Mater Chem Phys. 2016;181:333–43. https://doi.org/10.1016/J.MATCHEMPHYS.2016.06.067.

    Article  CAS  Google Scholar 

  98. Ahmadloo E, Azizi S. Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf. 2016;74:69–75. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.03.008.

    Article  CAS  Google Scholar 

  99. Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8. https://doi.org/10.1007/s10973-015-4565-5.

    Article  CAS  Google Scholar 

  100. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2016.04.023.

    Article  CAS  Google Scholar 

  101. Hemmat Esfe M, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43. https://doi.org/10.1007/s10973-016-5469-8.

    Article  CAS  Google Scholar 

  102. Vakili M, Karami M, Delfani S, Khosrojerdi S, Kalhor K. Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions. J Therm Anal Calorim. 2017;129:629–37. https://doi.org/10.1007/s10973-017-6217-4.

    Article  CAS  Google Scholar 

  103. Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018;541:154–64. https://doi.org/10.1016/J.COLSURFA.2018.01.030.

    Article  CAS  Google Scholar 

  104. Amani M, Amani P, Kasaeian A, Mahian O, Pop I, Wongwises S. Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Sci Rep. 2017;7:17369. https://doi.org/10.1038/s41598-017-17444-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77. https://doi.org/10.1016/J.RSER.2014.11.023.

    Article  CAS  Google Scholar 

  106. Esfe MH, Goodarzi M, Reiszadeh M, Afrand M. Evaluation of MWCNTs–ZnO/5W50 nanolubricant by design of an artificial neural network for predicting viscosity and its optimization. J Mol Liq. 2018. https://doi.org/10.1016/j.molliq.2018.08.047.

    Article  Google Scholar 

  107. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.05.021.

    Article  CAS  Google Scholar 

  108. Leong KY, Ku Ahmad KZ, Ong HC, Ghazali MJ, Baharum A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—a review. Renew Sustain Energy Rev. 2017;75:868–78. https://doi.org/10.1016/J.RSER.2016.11.068.

    Article  CAS  Google Scholar 

  109. Kannaiyan S, Boobalan C, Nagarajan FC, Sivaraman S. Modeling of thermal conductivity and density of alumina/silica in water hybrid nanocolloid by the application of artificial neural networks. Chin J Chem Eng. 2018. https://doi.org/10.1016/j.cjche.2018.07.018.

    Article  Google Scholar 

  110. Rostamian SH, Biglari M, Saedodin S, Hemmat Esfe M. An inspection of thermal conductivity of CuO–SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J Mol Liq. 2017;231:364–9. https://doi.org/10.1016/J.MOLLIQ.2017.02.015.

    Article  CAS  Google Scholar 

  111. Hemmat Esfe M, Abbasian Arani AA, Shafiei Badi R, Rejvani M. ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer. J Therm Anal Calorim. 2018;131:2381–93. https://doi.org/10.1007/s10973-017-6744-z.

    Article  CAS  Google Scholar 

  112. Hemmat Esfe M, Abbasian Arani AA, Firouzi M. Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG–water based SWCNT–ZnO (30%:70%) hybrid nanofluid. J Mol Liq. 2017;244:252–61. https://doi.org/10.1016/J.MOLLIQ.2017.08.087.

    Article  CAS  Google Scholar 

  113. Hemmat Esfe M, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2015.05.014.

    Article  CAS  Google Scholar 

  114. Hemmat Esfe M, Esfandeh S, Saedodin S, Rostamian H. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO–MWCNT/EG–water hybrid nanofluid for engineering applications. Appl Therm Eng. 2017;125:673–85. https://doi.org/10.1016/J.APPLTHERMALENG.2017.06.077.

    Article  CAS  Google Scholar 

  115. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H. Evaluation of thermal conductivity of MgO–MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Physica E. 2017;85:90–6. https://doi.org/10.1016/J.PHYSE.2016.08.020.

    Article  CAS  Google Scholar 

  116. Hemmat Esfe M, Esfandeh S, Rejvani M. Modeling of thermal conductivity of MWCNT–SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6680-y.

    Article  Google Scholar 

  117. Balla HH, Abdullah S, WanMahmood WMF, Abdul Razzaq M, Zulkifli R, Sopian K. Modelling and measuring the thermal conductivity of multi-metallic Zn/Cu nanofluid. Res Chem Intermed. 2013;39:2801–15. https://doi.org/10.1007/s11164-012-0799-z.

    Article  CAS  Google Scholar 

  118. Esfe MH, Rejvani M, Karimpour R, Abbasian Arani AA. Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim. 2017;128:1359–71. https://doi.org/10.1007/s10973-016-6002-9.

    Article  CAS  Google Scholar 

  119. Shahsavar A, Bahiraei M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol. 2017;318:441–50. https://doi.org/10.1016/J.POWTEC.2017.06.023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of Ioan Pop has been supported from the grant PN-III-P4-ID-PCE-2016-0036, UEFISCDI, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezanizadeh, M., Alhuyi Nazari, M., Ahmadi, M.H. et al. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim 138, 827–843 (2019). https://doi.org/10.1007/s10973-019-08154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08154-3

Keywords

Navigation