Skip to main content
Log in

Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Converter steel slag, currently underutilized crystalline metallurgical residue, was investigated for use as a precursor for alkali activation. Water glass solution with various moduli (0.5, 1.0, 1.5 and 2.0) was used at the same Na2O dosage of 4% in order to investigate effect of modulus on hydration. Pure cement paste with the same ratio of water to binder was selected as the control sample. Results show that modulus has a significant impact on the hydration and mechanical strength development of alkali-activated steel slag. Similar to pure cement paste, alkali-activated steel slag paste has C–S–H gel and Ca(OH)2 as its main hydration products. However, alkali-activated steel slag pastes have lower hydration heat and fewer amounts of hydration products. Additional silicate has a retarding effect on the hydration of steel slag. Hydration heat, Ca(OH)2 contents and non-evaporable water contents reduce with increasing modulus. In addition, high silicate modulus fines the pore structure and improves compressive strength of the hardened paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun J, Wang Z, Chen Z. Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. J Therm Anal Calorim. 2018;131(3):2291–301.

    Article  CAS  Google Scholar 

  2. Sun J, Chen Z. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol. 2018;338:725–33.

    Article  CAS  Google Scholar 

  3. Wang D, Wang Q, Fang Z. Influence of alkali activators on the early hydration of cement–based binders under steam curing condition. J Therm Anal Calorim. 2017;130(1):1–16.

    Article  Google Scholar 

  4. Tang SW, Yao Y, Li CAZJ. Recent durability studies on concrete structure. Cem Concr Res. 2015;78:143–54.

    Article  CAS  Google Scholar 

  5. Ding Y, Dai JG, Shi CJ. Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr Build Mater. 2016;127:68–79.

    Article  CAS  Google Scholar 

  6. Kani EN, Allahverdi A, Provis JL. Calorimetric study of geopolymer binders based on natural pozzolan. J Therm Anal Calorim. 2017;127(3):1–10.

    Google Scholar 

  7. Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: a review: part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater. 2008;22(7):1305–14.

    Article  Google Scholar 

  8. Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr Build Mater. 2008;22(7):1315–22.

    Article  Google Scholar 

  9. Wang Q, Yan P, Feng J. A discussion on improving hydration activity of steel slag by altering its mineral compositions. J Hazard Mater. 2011;186(2–3):1070–5.

    Article  CAS  PubMed  Google Scholar 

  10. Shi M, Wang Q, Zhou Z. Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition. Constr Build Mater. 2015;98:649–55.

    Article  Google Scholar 

  11. Wang Q, Shi M, Yang J. Influence of classified steel slag with particle sizes smaller than 20 μm on the properties of cement and concrete. Constr Build Mater. 2016;123:601–10.

    Article  Google Scholar 

  12. Han F, Zhang Z. Properties of 5-year-old concrete containing steel slag powder. Powder Technol. 2018;334:27–35.

    Article  CAS  Google Scholar 

  13. Kriskova L, Pontikes Y, Cizer Mertens G, Veulemans W, Geysen D, Jones PT, Vandewalle L, Van Balen K, Blanpain B. Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem Concr Res. 2012;42(6):778–88.

    Article  CAS  Google Scholar 

  14. Kriskova L, Pontikes Y, Zhang F, Cizer Jones PT, Van Balen K, Blanpain B. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem Concr Res. 2014;55(1):59–68.

    Article  CAS  Google Scholar 

  15. Kriskova L, Pontikes Y, Cizer Malfliet A, Dijkmans J, Sels B, Van Balen K, Blanpain B. Hydraulic behavior of mechanically and chemically activated synthetic merwinite. J Am Ceram Soc. 2014;97(12):3973–81.

    Article  CAS  Google Scholar 

  16. Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem Concr Res. 2002;32:459–62.

    Article  CAS  Google Scholar 

  17. Shi C, Hu S. Cementitious properties of ladle slag fines under autoclave curing conditions. Cem Concr Res. 2003;33(11):1851–6.

    Article  CAS  Google Scholar 

  18. Yusuf MO, Johari MAM, Ahmad ZA. Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete. Mater Struct. 2015;48(3):733–41.

    Article  CAS  Google Scholar 

  19. Gao X, Yu QL, Brouwers HJH. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater. 2015;80:105–15.

    Article  Google Scholar 

  20. Chi M. Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro–structural characteristics of alkali-activated fly ash mortars. Constr Build Mater. 2015;99:128–36.

    Article  Google Scholar 

  21. Shi Z, Shi C, Wan S. Effects of alkali dosage and silicate modulus on alkali–silica reaction in alkali-activated slag mortars. Cem Concr Res. 2018;111:104–15.

    Article  CAS  Google Scholar 

  22. Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem Concr Res. 2002;32(8):1181–8.

    Article  CAS  Google Scholar 

  23. Zhao J, Wang D, Yan P. Self-cementitious property of steel slag powder blended with gypsum. Constr Build Mater. 2016;113:835–42.

    Article  CAS  Google Scholar 

  24. Gebregziabiher BS, Thomas RJ, Peethamparan S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr Build Mater. 2016;113:783–93.

    Article  CAS  Google Scholar 

  25. Rashad AM, Bai Y, Basheer PAM. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res. 2012;42(2):333–43.

    Article  CAS  Google Scholar 

  26. Salman M, Cizer Ö, Pontikes Y. Alkali activation of AOD stainless steel slag under steam curing conditions. J Am Chem Soc. 2015;98(10):3062–74.

    CAS  Google Scholar 

  27. Salman M, Pontikes Y, Snellings R. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. J Hazard Mater. 2015;286:211–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wieczorek-ciurowa K, Paulik J, Paulik F. Influence of foreign materials upon the thermal decomposition of dolomite, calcite and magnesite part I. Influence of sodium chloride. Thermochim Acta. 1980;38:157–64.

    Article  CAS  Google Scholar 

  29. Taylor H. Cement chemistry. 1st ed. London: Academic Press Limited; 1990.

    Google Scholar 

  30. Pang B, Zhou Z, Xu H. Utilization of carbonated and granulated steel slag aggregate in concrete. Constr Build Mater. 2015;84:454–67.

    Article  Google Scholar 

  31. Nazari A, Riahi S. Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing SiO2 nanoparticles. Mater Sci Eng A. 2010;527(29):7663–72.

    Article  Google Scholar 

  32. Nicolas RS, Bernal SA, Gutiérrez RMD. Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cem Concr Res. 2014;65(11):41–51.

    Article  Google Scholar 

  33. Leong HY, Ong DEL, Sanjayan JG. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr Build Mater. 2016;106:500–11.

    Article  CAS  Google Scholar 

  34. Ryu GS, Lee YB, Koh KT. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater. 2013;47(5):409–18.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from the National Key Research and Development Program of China (2017YFC1503100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Chen, Z. Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag. J Therm Anal Calorim 138, 47–56 (2019). https://doi.org/10.1007/s10973-019-08146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08146-3

Keywords

Navigation