Skip to main content
Log in

Influence of Er3+ ions addition on thermal and optical properties of phosphate–germanate system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Zinc phosphate–germanate samples doped with Er3+ ions and co-doped with silver nanoparticles in the 59.7KPO3–0.3Ag(NPs)–20ZnO–(20 − x)GeO2xEr2O3 system where x ≤ 5 mol% were prepared by melting–quenching technique. The mentioned system was studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and ultraviolet–visible (UV–Vis) spectroscopy, too. XRD analysis shows the presence of amorphous state for low contents of erbium and the presence of the ErPO4 (tetragonal, body-centered lattice) crystalline phase beside the amorphous phase for high contents of erbium (x ≥ 3 mol%). DTA investigation permitted the identification of some thermal parameters such as glass transition temperature, crystallization temperature and melting temperature. From these data, other two important parameters were calculated: the fragility index and the activation energy of glass transition. In our case, the obtained data reveal a good thermal stability for the matrix of the studied system. The increase in the content of erbium ions leads to more fragile glasses and glass ceramic samples. The DTA results also show that the samples are obtained from KS liquids. The UV–Vis spectroscopy shows seven ff electronic transitions for the studied system, due to the presence of erbium ions. From the obtained UV–Vis data, the bonding parameter that shows an ionic character of the bonds from the glass ceramic network was calculated. Also, the values of optical band gap energy (\(E_{\text{g}}^{\text{opt}}\)) show that when the erbium ions content increases, the \(E_{\text{g}}^{\text{opt}}\) values decrease due probably to the amount of non-bridging oxygen atoms from the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gomes JF, Lima AMO, Sandrini M, Medina AN, Steimacher A, Pedrochi F, Barboza MJ. Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Opt Mater. 2017;66:211–9.

    Article  CAS  Google Scholar 

  2. Umar SA, Halimah MK, Chan KT, Latif AA. Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. J Non-Cryst Solids. 2017;472:31–8.

    Article  CAS  Google Scholar 

  3. Silarska K, Sroda M, Pasierb P. Application of DTA/DSC and dilatometry for optimization of Ba–Ce–Y–P–Si–O glass phase for composite protonic conductors based on BaCe0.9Y0.1O3−δ. J Therm Anal Calorim. 2018;133(1):87–93.

    Article  CAS  Google Scholar 

  4. Gautam CR, Das S, Gautam SS, Madheshiya A, Singh AK. Processing and optical characterization of lead calcium titanate borosilicate glass doped with germanium. J Phys Chem Solids. 2018;115:180–6.

    Article  CAS  Google Scholar 

  5. Tang Y, Shih K, Li M, Wu P. Zinc immobilization in simulated aluminum-rich waterworks sludge systems. Proc Environ Sci. 2016;31:691–7.

    Article  Google Scholar 

  6. Qi Y, Zhou Y, Wu L, Yang F, Peng S, Zheng S, Yin D, Wang X. Annealing time dependent 1.53 µm fluorescence enhancement in Er3+-doped tellurite glasses containing silver NPs. Mater Lett. 2014;125:56–8.

    Article  CAS  Google Scholar 

  7. Tauc J. Amorphous and liquid semiconductors. London: Plenum; 1974.

    Book  Google Scholar 

  8. Davis EA, Mott NF. Conduction in non-crystalline systems conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag. 1970;22:903–22.

    Article  CAS  Google Scholar 

  9. Dietzel A. Glass structure and glass properties. Glasstech Berl. 1968;22:41–50.

    Google Scholar 

  10. Hruby A. Evaluation of glass-forming tendency by means of DTA. Physica B. 1972;22:1187–93.

    CAS  Google Scholar 

  11. Hruby A. Glass-forming tendency in the GeSx system. Physica B. 1973;23:1263–72.

    CAS  Google Scholar 

  12. Saad M, Poulin M. Glass forming ability criteria. Mater Sci Forum. 1987;19–20:11–8.

    Article  Google Scholar 

  13. Rahvard MM, Tamizifar M, Boutorabi SMA. Non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 and Zr56Co22Cu6Al16 bulk metallic glasses. J Therm Anal Calorim. 2018;134(2):903–14.

    Article  Google Scholar 

  14. Kumar A, Ram IS, Kumar S, Ram J, Upadhyay AN, Singh K. Glass-forming ability and thermal stability of Se100−x(Ge2Sb2Te5)x glassy alloys. J Therm Anal Calorim. 2018;134(2):923–31.

    Article  CAS  Google Scholar 

  15. Kissinger HE. Reaction kinetics in thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  16. Saxena NS. Phase transformation kinetics and related thermodynamic and optical properties in chalcogenides glasses. J Non-Cryst Solids. 2004;161:345–6.

    Google Scholar 

  17. Assadi AA, Damak K, Lachheb R, Herrmann A, Yousef E, Russel C, Maâlej R. Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials. J Alloys Compd. 2015;620:129–36.

    Article  CAS  Google Scholar 

  18. Sinha SP. Complexes of the rare earths. Oxford: Pergamon Press; 1966.

    Book  Google Scholar 

  19. Carnall WT, Fields PR, Rajnak K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys. 1968;49:4424–42.

    Article  CAS  Google Scholar 

  20. Bolundut L, Culea E, Borodi G, Stefan R, Munteanu C, Pascuta P. Influence of Sm3+: Ag codoping on structural and spectroscopic properties of lead tellurite glass ceramics. Ceram Int. 2015;41:2931–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lidia Pop or Liviu Bolunduţ.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pop, L., Bolunduţ, L., Pascuta, P. et al. Influence of Er3+ ions addition on thermal and optical properties of phosphate–germanate system. J Therm Anal Calorim 138, 1895–1899 (2019). https://doi.org/10.1007/s10973-019-08145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08145-4

Keywords

Navigation