Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1991–2006 | Cite as

Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping

  • S. NoreenEmail author
  • Qurat Ul Ain


In current paper, it is aimed to investigate the entropy generation of electroosmotic flow aggravated by peristaltic pumping across a non-Darcy porous medium. We have implemented the Darcy Forchheimer model to interpret the permeability of porous media. The electro-magneto-hydrodynamic flow is considered in a symmetric channel. We have analyzed the flow characteristics, heat transfer and entropy generation for various values of joule heating parameter \(\gamma\), Hartmann number \(H_{\text{m}}\), Darcy number \(\Omega^{2}\), Forchheimer number \(c_{\text{F}}\) and electroosmotic parameter m. It is found that entropy generation increases for increasing values of Darcy number \(\Omega^{2}\) and Forchheimer number \(c_{\text{F}}\).


Entropy generation Electroosmosis Heat transfer Peristalsis Non-Darcy porous medium 



  1. 1.
    Bejan A. Entropy generation minimization. 2nd ed. Boca Raton: CRC; 1996.Google Scholar
  2. 2.
    Sciacovelli A, Verda V, Sciubba E. Entropy generation analysis as a design tool—a review. Renew Sustain Energy Rev. 2015;43:1167–81.CrossRefGoogle Scholar
  3. 3.
    Zhao L, Liu LH. Entropy generation analysis of electro-osmotic flow in open-end and closed-end micro-channels. Ain Shams Eng J. 2017;8:623–32.CrossRefGoogle Scholar
  4. 4.
    Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.CrossRefGoogle Scholar
  5. 5.
    Afridi MI, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300.CrossRefGoogle Scholar
  6. 6.
    Gul A, Khan I, Makhanov SS. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid. Results Phys. 2018;9:947–54.CrossRefGoogle Scholar
  7. 7.
    Saqib M, Ali F, Khan I, Sheikh NA, Khan A. Entropy generation in different types of fractionalized nanofluids. Arab J Sci Eng. 2018:44(1):1–10.Google Scholar
  8. 8.
    Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54(3):615–22.CrossRefGoogle Scholar
  9. 9.
    Afridi MI, Qasim M, Shafie S, Makinde OD. Entropy generation analysis of spherical and non-spherical ag-water nanofluids in a porous medium with magnetic and porous dissipation. J Nanofluids. 2018;7(5):951–60.CrossRefGoogle Scholar
  10. 10.
    Abbas MA, Bai Y, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18(3):90.CrossRefGoogle Scholar
  11. 11.
    Rashidi MM, Bhatti MM, Abbas MA, Ali ME. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18(4):117.CrossRefGoogle Scholar
  12. 12.
    Qasim M, Hayat Khan Z, Khan I, Al-Mdallal QM. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy. 2017;19(10):490.CrossRefGoogle Scholar
  13. 13.
    Alizadeh R, Karimi N, Arjmandzadeh R, et al. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018. Scholar
  14. 14.
    Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018. Scholar
  15. 15.
    Cameselle C, Reddy KR. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim Acta. 2012;86:10–22.CrossRefGoogle Scholar
  16. 16.
    Zhou J, Tao YL, Xu CJ, Gong XN, Hu PC. Electro-osmotic strengthening of silts based on selected electrode materials. Soils Found. 2015;55(5):1171–80.CrossRefGoogle Scholar
  17. 17.
    Tripathi D, Bhushan S, Bég OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A. 2016;506:32–9.CrossRefGoogle Scholar
  18. 18.
    Bouriat P, Saulnier P, Brochette P, Graciaa A, Lachaise J. A convenient apparatus to determine the zeta potential of grains by electro-osmosis. J Colloid Interface Sci. 1999;209(2):445–8.CrossRefGoogle Scholar
  19. 19.
    Li B, Zhou WN, Yan YY, Tian C. Evaluation of electro-osmotic pumping effect on microporous media flow. Appl Therm Eng. 2013;60(1–2):449–55.CrossRefGoogle Scholar
  20. 20.
    Latham TW. Fluid motion in a peristaltic pump. Cambridge: MIT; 1966.Google Scholar
  21. 21.
    Noreen S. Peristaltically assisted nanofluid transport in an asymmetric channel. Karbala Int J Mod Sci. 2018;4(1):35–49.CrossRefGoogle Scholar
  22. 22.
    Noreen S, Rashidi MM, Qasim M. Blood flow analysis with considering nanofluid effects in vertical channel. Appl Nanosci. 2017;7(5):193–9.CrossRefGoogle Scholar
  23. 23.
    Noreen S. Effects of joule heating and convective boundary conditions on magnetohydrodynamic peristaltic flow of couple-stress fluid. J Heat Transf. 2016;138(9):094502.CrossRefGoogle Scholar
  24. 24.
    Misra JC, Pandey SK. Peristaltic transport of blood in small vessels: study of a mathematical model. Comput Math Appl. 2002;43(8–9):1183–93.CrossRefGoogle Scholar
  25. 25.
    Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z angew Math Phys ZAMP. 2003;54(3):532–50.CrossRefGoogle Scholar
  26. 26.
    Qasim M, Noreen S. Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. Eur Phys J Plus. 2014;129(1):7.CrossRefGoogle Scholar
  27. 27.
    Vajravelu K, Radhakrishnamacharya G, Radhakrishnamurty V. Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int J Non-Linear Mech. 2007;42(5):754–9.CrossRefGoogle Scholar
  28. 28.
    Srinivas S, Kothandapani M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput. 2009;213(1):197–208.Google Scholar
  29. 29.
    Tripathi D. Peristaltic transport of a viscoelastic fluid in a channel. Acta Astronaut. 2011;68(7–8):1379–85.CrossRefGoogle Scholar
  30. 30.
    Starov VM, Zhdanov VG. Effective viscosity and permeability of porous media. Colloids Surf A. 2001;192(1–3):363–75.CrossRefGoogle Scholar
  31. 31.
    Reddy MG. Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alex Eng J. 2016;55(2):1225–34.CrossRefGoogle Scholar
  32. 32.
    Elshehawey EF, Eldabe NT, Elghazy EM, Ebaid A. Peristaltic transport in an asymmetric channel through a porous medium. Appl Math Comput. 2006;182(1):140–50.Google Scholar
  33. 33.
    Noreen S. Magneto-thermo hydrodynamic peristaltic flow of Eyring–Powell nanofluid in asymmetric channel. Nonlinear Eng. 2018;7(2):83–90.CrossRefGoogle Scholar
  34. 34.
    Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018;12:374–80.CrossRefGoogle Scholar
  35. 35.
    Khan I, Abro KA, Mirbhar MN, Tlili I. Thermal analysis in Stokes’ second problem of nanofluid: applications in thermal engineering. Case Stud Therm Eng. 2018;12:271–5.CrossRefGoogle Scholar
  36. 36.
    Kouloulias K, Sergis A, Hardalupas YJ. Assessing the flow characteristics of nanofluids during turbulent natural convection. Therm Anal Calorim. 2018. Scholar
  37. 37.
    Forcheimer P. Wasserbewewegung durch Boden. Z Ver Deutsch Ing. 1901;45:1782–8.Google Scholar
  38. 38.
    Begum AS, Nithyadevi N, Öztop HF, Al-Salem K. Numerical simulation of MHD mixed convection in a nanofluid filled non-darcy porous enclosure. Int J Mech Sci. 2017;1(130):154–66.CrossRefGoogle Scholar
  39. 39.
    Wu YS. Non Darcy displacements of immiscible fluids in porous media. Water Resour Res 2001;37:2943–50.CrossRefGoogle Scholar
  40. 40.
    Veyskarami M, Hassani AH, Ghazanfari MH. Modeling of non-Darcy flow through anisotropic porous media: role of pore space profiles. Chem Eng Sci. 2016;151:93–104.CrossRefGoogle Scholar
  41. 41.
    Gupta A, Coelho D, Adler PM. Universal electro-osmosis formulae for porous media. J Colloid Interface Sci. 2008;319(2):549–54.CrossRefGoogle Scholar
  42. 42.
    Tripathi D. Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model. 2013;57(5–6):1270–83.CrossRefGoogle Scholar
  43. 43.
    Tripathia D, Bhushan S, Bég OA. Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alex Eng J 2018;57(3):1349–59.CrossRefGoogle Scholar
  44. 44.
    Goswami P, Chakraborty S. Semi-analytical solutions for electrosomotic flows with interfacial slip in microchannels of complex crosssectional shapes. Microfluid Nanofluid. 2011;11:255–67.CrossRefGoogle Scholar
  45. 45.
    Tripathi D, Bhushan S, Beg OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A Physicochem Eng Asp. 2016;506:32–9.CrossRefGoogle Scholar
  46. 46.
    Nield DA. Modelling fluid flow and heat transfer in a saturated porous medium. Adv Decis Sci. 2000;4(2):165–73.Google Scholar
  47. 47.
    Jaffrin MY, Shapiro AH. Peristaltic pumping. Annu Rev Fluid Mech. 1971;3:13–37.CrossRefGoogle Scholar
  48. 48.
    Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths and low Reynolds number. J Fluid Mech. 1969;37:799–825.CrossRefGoogle Scholar
  49. 49.
    Kikuchi Y. Effect of Leukocytes and platelets on blood flow through a parallel array of microchannels: micro-and Macroflow relation and rheological measures of leukocytes and platelate acivities. Microvasc Res. 1995;50:288–300.CrossRefGoogle Scholar
  50. 50.
    Akbar NS. Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy. 2015;82:23–30.CrossRefGoogle Scholar
  51. 51.
    Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54:615–22.CrossRefGoogle Scholar
  52. 52.
    Akbar NS, Raza M, Ellahi R. Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 2015;5:115–24.CrossRefGoogle Scholar
  53. 53.
    Abbas MA, Yanqin B, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18:90.CrossRefGoogle Scholar
  54. 54.
    Rashidi MM, Bhatti MM, Abbas MA, Ali MES. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;16:117.CrossRefGoogle Scholar
  55. 55.
    Maraj EN, Nadeem S. Theoretical analysis of entropy generation in peristaltic transport of nanofluid in an asymmetric channel. Int J Exergy. 2016;20:294–317.CrossRefGoogle Scholar
  56. 56.
    Munawar S, Saleem N, Aboura K. Second law analysis in the peristaltic flow of variable viscosity fluid. Int J Exergy. 2016;20:170–85.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsComsats University IslamabadIslamabadPakistan

Personalised recommendations