Skip to main content
Log in

Equivalent analysis of the explosion overpressure of gasoline vapor–air mixture by using isooctane equivalence ratio

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isooctane is often used as a substitute to investigate the heat release, chemical kinetic models and flame behaviors of the gasoline vapor explosion process. Such substitution always leads to some inevitable errors between the overpressures of theoretical calculation value and the experimental data of the gasoline vapor explosion. Based on the deduction of the relationship between the equivalence ratio (\(\emptyset\)) and volume concentration of isooctane–air mixture, the constant volume adiabatic combustion temperature and overpressure of the isooctane explosion at different \(\emptyset\) were calculated by using the first law of thermodynamics. Then, through the experiments of gasoline vapor explosion in a standard 20-L spherical explosive device, explosion overpressures at different gasoline vapor volume concentrations were obtained. By analyzing the overpressure error between the theoretical value of the isooctane explosion and the experimental data of the gasoline vapor explosion, an equivalent relationship in terms of isooctane equivalence ratio for gasoline vapor constant volume explosion overpressure is proposed. This relationship not only can be used to accurately predict gasoline vapor constant volume explosion overpressure by means of isooctane, but also can be used to modify the gasoline explosion overpressure calculation model and enable the errors between the model’s calculation value and the actual experimental value to be significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang H, Chen GX, Feng JY. Determination of chemical components in gasoline 93# by GC-MS. J Instr Anal. 2003;22(5):56–9 (in Chinese).

    CAS  Google Scholar 

  2. Metghalchi M, Keck JC. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust Flame. 1982;48:191–210.

    Article  CAS  Google Scholar 

  3. Curran HJ, Pitz WJ, Westbrook CK, Callahan GV, Dryer FL. Oxidation of automotive primary reference fuels at elevated pressures. Symp Combust Proc. 1998;27(1):379–87.

    Article  Google Scholar 

  4. Sileghem H, Alekseev VA, Vancoillie J, Geem KMV, Nilsson E, Verhelst S, Konnov AA. Laminar burning velocity of gasoline and the gasoline surrogate components isooctane, n-heptane and toluene. Fuel. 2013;112(3):355–65.

    Article  CAS  Google Scholar 

  5. Zhang P, Du Y, Wu S, Zhou Y, Zhou J, Xu J. Experiments of the secondary ignition of gasoline–air mixture in a confined tunnel. J Therm Anal Calorim. 2014;118(3):1773–80.

    Article  CAS  Google Scholar 

  6. Halstead MP, Kirsch LJ, Quinn CP. The autoignition of hydrocarbon fuels at high temperatures and pressures - fitting of a mathematical model. Combust Flame. 1977;30(77):45–60.

    Article  CAS  Google Scholar 

  7. Bohm H, Lacas F. On extinction limits and polycyclic aromatic hydrocarbon formation in strained counter flow coursing together flames from 1 to 6 bar. Proc Combust Inst. 2000;28(2):2627–34.

    Article  CAS  Google Scholar 

  8. Liu Y, Jia M, Xie M, Pang B. Improvement on a skeletal chemical kinetic model of isooctane for internal combustion engine by using a practical methodology. Fuel. 2013;103(1):884–91.

    Article  CAS  Google Scholar 

  9. Shigeyuki T, Ferran A, James CK. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine. Combust Flame. 2003;133:467–81.

    Article  CAS  Google Scholar 

  10. Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion. Proc Combust Inst. 2009;32(2):2835–41.

    Article  CAS  Google Scholar 

  11. Lu T, Chung KL. Linear time reduction of large kinetic mechanisms with the following relation graph: n-heptane and isooctane. Combust Flame. 2006;144:24–36.

    Article  CAS  Google Scholar 

  12. Javed T, Nasir EF, Es-Sebbar ET, Farooq A. A comparative study of the oxidation characteristics of two gasoline fuels and an n-heptane/iso-octane surrogate mixture. Fuel. 2015;140:201–8.

    Article  CAS  Google Scholar 

  13. Jia M, Xie MZ. A chemical kinetics model of iso-octane oxidation for HCCI engines. Fuel. 2006;85(17):2593–604.

    Article  CAS  Google Scholar 

  14. Cox RA, Cole JA. Chemical aspects of the autoignition of hydrocarbon-air mixture. Combust Flame. 1985;60(2):109–23.

    Article  CAS  Google Scholar 

  15. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  16. Nakayama J, Aoki H, Homma T, Yamaki N, Miyake A. Thermal hazard analysis of a dehydrogenation system involving methylcyclohexane and toluene. J Therm Anal Calorim. 2018;133:805–12.

    Article  CAS  Google Scholar 

  17. Qi S, Du Y, Zhang P, Liang J, Wang S, Li Y. Study on Gasoline-air mixture deflagration flame with different equivalence ratios in a closed vessel. Combust Sci Technol. 2018;190(1):20–31.

    Article  CAS  Google Scholar 

  18. Kelley AP, Liu W, Xin YX, Smallbone AJ, Law CK. Laminar flame, non-premixed stagnation ignition and reduced mechanisms in the oxidation of isooctane. Proc Combust Inst. 2011;33(1):501–8.

    Article  CAS  Google Scholar 

  19. Qi S, Du Y, Zhang P, Li G, Zhou Y, Wang B. Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. J Hazard Mater. 2017;323(Part B):593–601.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Du Y, Wu S, Xu J, Li G, Xu P. Flame regime estimations of gasoline explosion in a tube. J Loss Prev Process Ind. 2015;33:304–10.

    Article  CAS  Google Scholar 

  21. Zhang Q, Li D. Comparison of the explosion characteristics of hydrogen, propane, and methane clouds at the stoichiometric concentrations. Int J Hydrogen Energy. 2017;42(21):14794–808.

    Article  CAS  Google Scholar 

  22. Qi S, Du Y, Wang S, Zhou Y, Li G. The effect of vent size and concentration in vented gasoline-air explosions. J Loss Prev Process Ind. 2016;44:88–94.

    Article  CAS  Google Scholar 

  23. Zhang Q, Wang Y, Lian Z. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles. J Hazard Mater. 2017;334:59–67.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang P, Du Y, Qi S, Wu S, Xu J. Experiments of gasoline–air mixture explosion suppression by non-premixed nitrogen in a closed tunnel. J Therm Anal Calorim. 2015;121:885–93.

    Article  CAS  Google Scholar 

  25. Mitu M, Brandes E, Hirsch W. Mitigation effects on the explosion safety characteristic data of ethanol/air mixtures in closed vessel. Process Saf Environ Prot. 2018;117:190–9.

    Article  CAS  Google Scholar 

  26. Stephen RT. An introduction to combustion: concepts and application. New York: The McGraw-Hill Companies; 2000. p. 201.

    Google Scholar 

  27. Volodin VV, Korobov AE, Golovastov SV, Golub VV. The effect of reflected acoustic disturbances on flame front acceleration. Tech Phys Lett. 2015;41(11):1051–3.

    Article  CAS  Google Scholar 

  28. Luca Motoc D, Ferrandiz Bou S, Balart R. Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites. J Therm Anal Calorim. 2018;133:509–18.

    Article  CAS  Google Scholar 

  29. Almeida TF, Leite FHG, Faria RT Jr, Holanda JNF. Thermal study of calcium silicate material synthesized with solid wastes. J Therm Anal Calorim. 2017;128:1265–72.

    Article  CAS  Google Scholar 

  30. Zhang P, Du Y, Zhou Y, Qi S, Wu S, Xu J. Explosions of gasoline–air mixture in the tunnels containing branch configuration. J Loss Prev Process Ind. 2013;26:1279–84.

    Article  CAS  Google Scholar 

  31. Yang D, Li ZP, Hong OY. Effects of humidity, temperature and slow oxidation reactions on the occurrence of gasoline-air explosions. J Fire Prot Eng. 2013;23:226–38.

    Article  Google Scholar 

  32. Ajrash MJ, Zanganeh J, Moghtaderi B. Methane-coal dust hybrid fuel explosion properties in a large scale cylindrical explosion chamber. J Loss Prev Process Ind. 2016;40:317–28.

    Article  CAS  Google Scholar 

  33. Phylaktou H, Andrews GE. Gas explosions in long closed vessels. Combust Sci Technol. 1991;77(1–3):27–39.

    Article  CAS  Google Scholar 

  34. Phylaktou H, Andrews GE. The acceleration of flame propagation in a tube by an obstacle. Combust Flame. 1991;85(3–4):363–79.

    Article  CAS  Google Scholar 

  35. Giurcan V, Razus D, Mitu M, Oancea D. Prediction of flammability limits of fuel-air and fuel-air-inert mixtures from explosivity parameters in closed vessels. J Loss Prev Process Ind. 2015;34:65–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51704301), National Defense Technology Project Foundation (No. 3604031) and Youth Scientific Research Foundation of LEU (No. YQ16-420802), are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peili Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Liang, J. & Wang, J. Equivalent analysis of the explosion overpressure of gasoline vapor–air mixture by using isooctane equivalence ratio. J Therm Anal Calorim 137, 1775–1781 (2019). https://doi.org/10.1007/s10973-019-08100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08100-3

Keywords

Navigation