Journal of Thermal Analysis and Calorimetry

, Volume 137, Issue 6, pp 1951–1960 | Cite as

Thermal behaviors of a porous calcium silicate material prepared from coal-bearing strata kaolinite

  • Xiaoyan Wang
  • Junmin SunEmail author
  • Yinmin Zhang
  • Lixin Li
  • Yongfeng Zhang


The thermal behaviors of a porous calcium silicate (PCS) material prepared from coal-bearing strata kaolinite were investigated by thermogravimetry and derivative thermogravimetry (TG–DTG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and Brunauer–Emmett–Teller method. The XRD results showed that the PCS was determined as calcium silicate hydrates (C–S–H) and a small amount of CaCO3, which transformed to an orderly crystal structure of wollastonite approximately at 700 °C. The TG–DTG results indicated that the dehydration was observed until 300 °C and the dehydroxylation presented at 728 °C. The PCS exhibited a large number of pores with a fibrous flake network structure, which disappeared at 800 °C. The BET data showed that the specific surface area of material decreased as the temperature increased. The high-temperature phase transformation of PCS underwent the following transformation: active calcium silicate → dehydrated calcium silicate  dehydroxylated calcium silicate  wollastonite.


Coal-bearing strata kaolinite Active calcium silicate Phase transition Wollastonite 



The authors gratefully acknowledge the financial support provided by the Natural Science Foundation Project of Inner Mongolia Autonomous Region (Grant No. 2015MS0205), Natural Science Foundation Project of Inner Mongolia Autonomous Region (Grant No. 2018MS05061), and Inner Mongolia Educational committee (Grant No. NJZY089).


  1. 1.
    Gao Y, Huang H, Tang W, Liu X, Yang X, Zhang J. Preparation and characterization of a novel porous silicate material from coal gangue. Microporous Mesoporous Mater. 2015;217:210–8.CrossRefGoogle Scholar
  2. 2.
    Li L, Zhang Y, Zhang Y, Sun J, Hao Z. The thermal activation process of selected coal gangue in Zhungeer. J Therm Anal Calorim. 2016;126(3):1559–66.CrossRefGoogle Scholar
  3. 3.
    Li C, Wan J, Sun H, Li L. Investigation on the activation of coal gangue by a new compound method. J Hazard Mater. 2010;179(1–3):515–20.CrossRefGoogle Scholar
  4. 4.
    Xu X, Lao X, Wu J, Xu X, Zhang Y, Li K. In-situ synthesis of SiCw/Al2O3 composite honeycomb ceramics by aluminium-assisted carbothermal reduction of coal series kaolin. Appl Clay Sci. 2016;126:122–31.CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Nakano J, Liu L, Wang X. Co-combustion and emission characteristics of coal gangue. J Therm Anal Calorim. 2015;120(3):1883–92.CrossRefGoogle Scholar
  6. 6.
    Liu S, Yang H. Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage. Appl Clay Sci. 2014;101:277–81.CrossRefGoogle Scholar
  7. 7.
    Xu X, Lao X, Wu J, Zhang Y. Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing. Appl Clay Sci. 2015;115:76–86.CrossRefGoogle Scholar
  8. 8.
    Cheng H, Liu Q, Yang J, Frost RL. Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta. 2010;507–08(33):84–90.CrossRefGoogle Scholar
  9. 9.
    Zhou C, Liu G, Yan Z. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel. 2012;97:644–50.CrossRefGoogle Scholar
  10. 10.
    Frías M, Rojas MISD, García R, Valdés AJ, Medina C. Effect of activated coal mining wastes on the properties of blended cement. Cem Concrete Compos. 2012;34(5):678–83.CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Liu Q, Wu Z, Zheng Q, Cheng H. Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim. 2011;110(3):1167–72.CrossRefGoogle Scholar
  12. 12.
    Cheng H, Yang J, Liu Q, Zhang J, Frost RL. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite—a mid-infrared and near-infrared study. Spectrochim Acta Part A Mol Biomol Spectrosc. 2010;77(4):856–61.CrossRefGoogle Scholar
  13. 13.
    Cheng H, Liu Q, Liu J, Sun B, Kang Y, Frost RL. TG-MS-FTIR (evolved gas analysis) of kaolinite–urea intercalation complex. J Therm Anal Calorim. 2014;166(1):195–203.CrossRefGoogle Scholar
  14. 14.
    Cheng H, Liu Q, Yang J, Ma S, Frost RL. The thermal behavior of kaolinite intercalation complexes—a review. Thermochim Acta. 2012;545:1–13.CrossRefGoogle Scholar
  15. 15.
    Cheng H, Li K, Liu Q, Zhang S, Li X, Frost RL. Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis. J Therm Anal Calorim. 2014;117(3):1231–9.CrossRefGoogle Scholar
  16. 16.
    Cheng H, Liu Q, Cui X, Zhang Q, Zhang Z, Frost RL. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate. J Colloid Interface Sci. 2012;376:47–56.CrossRefGoogle Scholar
  17. 17.
    Cheng H, Yang J, Frost RL. Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese palygorskites—implications for structural water. Thermochim Acta. 2011;512(1–2):202–7.CrossRefGoogle Scholar
  18. 18.
    Cheng H, Yang J, Liu Q, He J, Frost RL. Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese kaolinites. Thermochim Acta. 2010;507–08:106–14.CrossRefGoogle Scholar
  19. 19.
    Cheng H, Zhou Y, Feng Y, Geng W, Liu Q, Guo W, Jiang L. Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with janus nanobuilding blocks. Adv Mater. 2017;29:1700177.CrossRefGoogle Scholar
  20. 20.
    Hong J, Sun J, Xu X, Yang H, Li Y. High-temperature phase change of active calcium silicate. Bull Chin Ceram Soc. 2016;35(3):736–42.Google Scholar
  21. 21.
    Xu P. Study on the non-halogen flame retardant properties of pp/calcium silicate. Beijing: Beijing University of Chemical Technology; 2013.Google Scholar
  22. 22.
    Zaoui A. Insight into elastic behavior of calcium silicate hydrated oxide (C–S–H) under pressure and composition effect. Cem Concr Res. 2012;42(2):306–12.CrossRefGoogle Scholar
  23. 23.
    Renaudin G, Russias J, Leroux F, et al. Structural characterization of C–S–H and C–A–S–H samples part I: long-range order investigated by Rietveld analyses. J Solid State Chem. 2009;182:3312–9.CrossRefGoogle Scholar
  24. 24.
    Han J, Liu P, Wang W, Han J, Ma L. Study on coking wastewater treatment by calcium silicate. Inorg Chem Ind. 2011;43(7):45–7.Google Scholar
  25. 25.
    Wu P, Zhang M, Wang J, Song S. Application of calcium silicate generated from fly ash as filler in papermaking. China Pulp Pap. 2012;31(12):27–31.Google Scholar
  26. 26.
    Liu Q, Zhang S, Sun J, Zhang J. Study on properties of styrene-butadiene rubber filled by active calcium silicate. J Hunan Univ Sci Technol. 2013;28(2):95–101.Google Scholar
  27. 27.
    Wang J, Fang L, Cheng FQ, Duan XF, Chen RM. Hydrothermal synthesis of SBA-15 using sodium silicate derived from coal gangue. J Nanomater. 2013;(13):363–71.Google Scholar
  28. 28.
    Meneses DDS, Eckes M, del Campo L, et al. Investigation of medium range order in silicate glasses by infrared spectroscopy. Vib Spectrosc. 2013;65(3):50–7.CrossRefGoogle Scholar
  29. 29.
    Liew YM, Kamarudin H, Al Bakri AMM, et al. Processing and characterization of heated kaolin cement powder. Constr Build Mater. 2012;30(30):794–802.CrossRefGoogle Scholar
  30. 30.
    Tsoncheva T, Issa G, Blasco T, Dimitrov M, Popova M. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl Catal A Gen. 2013;453:1–12.CrossRefGoogle Scholar
  31. 31.
    Dambrauskas T, Baltakys K, Eisinas A, Siauciunas R. A study on the thermal stability of kilchoanite synthesized under hydrothermal conditions. J Therm Anal Calorim. 2017;127:229–38.CrossRefGoogle Scholar
  32. 32.
    Ines García-Lodeiro A, Fernández-Jiménez A, Blanco MT, Palomo A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J Sol-Gel Sci Technol. 2008;45:63–72.CrossRefGoogle Scholar
  33. 33.
    Lee J, Sohn K, Hyeon T. Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J Am Chem Soc. 2001;123(21):5146–7.CrossRefGoogle Scholar
  34. 34.
    Guan W, Ji F, Chen Q, et al. Preparation and phosphorus recovery performance of porous calcium–silicate–hydrate. Ceram Int. 2013;39(2):1385–91.CrossRefGoogle Scholar
  35. 35.
    Gasek K, Partyka J, Gajek M, et al. Characteristic of synthesis and transformations of hardystonite in willemite glass-crystalline glaze based on thermal analysis. J Therm Anal Calorim. 2016;125:1135–42.CrossRefGoogle Scholar
  36. 36.
    Harabi A, Chehlatt S. Preparation process of a highly resistant wollastonite bioceramics using local raw materials: effect of B2O3 additions on sintering and mechanical properties. J Therm Anal Calorim. 2013;111(1):203–11.CrossRefGoogle Scholar
  37. 37.
    Shukur MM, Al-Majeed EA, Obied MM. Characteristic of wollastonite synthesized from local raw materials. Int J Eng Technol. 2014;4(7):426–9.Google Scholar
  38. 38.
    Lu W. Mineral infrared spectroscopy. Chongqing: Chongqing University Press; 1988.Google Scholar
  39. 39.
    Hu B, Cui C, Cui X, Qin J, Ma H. Structure and morphology transition of tobermorite after heated at 725°C. J Chin Ceram Soc. 2015;2:237–40.Google Scholar
  40. 40.
    Zhang W, Jiayuan YE, Wang Y, et al. Pore structure and surface fractal characteristics of calcium silicate hydrates contained organic macromolecule. J Chin Ceram Soc. 2006;34(12):1497–502.Google Scholar
  41. 41.
    Rosen R. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. Journal of Physical Chemistry B. 2004;108(31):11480–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Chemical Engineering CollegeInner Mongolia University of TechnologyHohhotChina

Personalised recommendations