Skip to main content
Log in

The effect of Cu–Zn distribution in zincian malachite on the formation of individual CuO and ZnO particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cu–Zn distribution in zincian malachite was regulated in preparation process, and its effect on the formation of CuO and ZnO during the thermal decomposition was investigated. In the HRTEM images, there are obvious individual particles comprised of pure CuO or ZnO in the calcined samples prepared by conventional batch reactor (BR), whereas no pure particle appears in the samples prepared by microchannel reactor (MR). The fraction of Zn2+ incorporating into malachite and the relevance between Cu and Zn confirmed MR precursors were more homogeneous than BR precursors. The TGA/DTG curves showed the uniform distribution caused more interfaces and stronger interaction between Cu and Zn, which could depress the formation of individual CuO and ZnO particles. The combined effects of non-uniform distribution and thermodynamics de-mixing lead to the appearance of CuO and ZnO particles. The result illustrates how the Cu–Zn distribution acts on the thermal decomposition and affects catalyst structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Díez-Ramírez J, Dorado F, de la Osa AR, Valverde JL, Sanchez P. Hydrogenation of CO2 to methanol at atmospheric pressure over Cu/ZnO catalysts: influence of the calcination, reduction, and metal loading. Ind Eng Chem Res. 2017. https://doi.org/10.1021/acs.iecr.6b04662.

    Article  Google Scholar 

  2. Schur M, Bems B, Dassenoy A, Kassatkine I, Urban J, Wilmes H, Hinrichsen O, Muhler M, Schlogl R. Continuous coprecipitation of catalysts in a micromixer: nanostructured Cu/ZnO composite for the synthesis of methanol. Angew Chem Int Ed. 2003. https://doi.org/10.1002/anie.200250709.

    Article  Google Scholar 

  3. Chen HY, Lau SP, Chen L, Lin J, Huan CHA, Tan KL, Pan JS. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis. Appl Surf Sci. 1999. https://doi.org/10.1016/S0169-4332(99)00317-7.

    Article  Google Scholar 

  4. Jiang X, Zheng L, Wang ZY, Lu JGJ. Microstructure characters of Cu/ZnO catalyst precipitated inside microchannel reactor. Mol Catal A Chem. 2016. https://doi.org/10.1016/j.molcata.2016.07.046.

    Article  Google Scholar 

  5. Gines MJL, Apesteguia CR. Thermal decomposition of Cu-based hydroxycarbonate catalytic precursors for the low-temperature CO-shift reaction. J Therm Anal Calorim. 1997. https://doi.org/10.1007/BF01979204.

    Article  Google Scholar 

  6. Stone FS, Waller D. Cu–ZnO and Cu–ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts. Top Catal. 2003. https://doi.org/10.1023/A:1023592407825.

    Article  Google Scholar 

  7. Smith PJ, Kondrat SA, Chater PA, Yeo BR, Shaw GM, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Hutchings GJ. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chem Sci. 2017. https://doi.org/10.1039/c6sc04130b.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Behrens M, Schlogl R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts. Z Anorg Allg Chem. 2013. https://doi.org/10.1002/zaac.201300356.

    Article  Google Scholar 

  9. Perchiazzi N, Demitri N, Feher B, Vignola P. ON the crystal-chemistry of rosasite and paradsasvarite. Can Miner. 2017. https://doi.org/10.3749/canmin.1700041.

    Article  Google Scholar 

  10. Perchiazzi N, Merlino S. The malachite-rosasite group: crystal structures of glaukosphaerite and pokrovskite. Eur J Miner. 2006. https://doi.org/10.1127/0935-1221/2006/0018-0787.

    Article  Google Scholar 

  11. Porta P, Derossi S, Ferraris G, Lojacono M, Minell G, Moretti G. Structural characterization of malachite-like coprecipitated precursors of binary CuO–ZnO catalysts. J Catal. 1988. https://doi.org/10.1016/0021-9517(88)90219-9.

    Article  Google Scholar 

  12. Jambor JL. Geological survey of Canada. Report of activities; 1976.

  13. Baltes C, Vukojevic S, Schuth F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal. 2008. https://doi.org/10.1016/j.jcat.2008.07.004.

    Article  Google Scholar 

  14. Porta P, Derossi S, Ferraris G, Pompa F. Characterization of copper–zinc mixed-oxide system in relation to different precursor structure and morphology. Solid State Ion. 1991. https://doi.org/10.1016/0167-2738(91)90100-P.

    Article  Google Scholar 

  15. Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlogl R. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chem Eur J. 2003. https://doi.org/10.1002/chem.200204122.

    Article  PubMed  Google Scholar 

  16. Mansour SAA. Thermoanalytical investigations of the decomposition course of copper oxysalts. J Therm Anal Calorim. 1996. https://doi.org/10.1007/BF01979966.

    Article  Google Scholar 

  17. Tarasov A, Schumann J, Girgsdies F, Thomas N, Behrens M. Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts. Thermochim Acta. 2014. https://doi.org/10.1016/j.tca.2014.04.025.

    Article  Google Scholar 

  18. Xin J, Xiangfei Q, Chen L, Zhiyong W, Jiangang L. The effect of mixing on co-precipitation and evolution of microstructure of Cu–ZnO catalyst. AIChE J. 2018. https://doi.org/10.1002/aic.16168.

    Article  Google Scholar 

  19. Song YJ, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small. 2008. https://doi.org/10.1002/smll.200701029.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Worner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluidics. 2012. https://doi.org/10.1007/s10404-012-0940-8.

    Article  Google Scholar 

  21. Behrens M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts. J Catal. 2009. https://doi.org/10.1016/j.jcat.2009.07.009.

    Article  Google Scholar 

  22. Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schloegl R, Hinrichsen O. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts. Appl Catal A Gen. 2015. https://doi.org/10.1016/j.apcata.2015.06.014.

    Article  Google Scholar 

  23. Colonna S, Bastianini M, Sisani M, Fina A. CO2 adsorption and desorption properties of calcined layered double hydroxides. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7152-8.

    Article  Google Scholar 

  24. Neves VA, Costa MV, Senra JD, Aguiar LCS, Malta LFB. Thermal behavior of LDH 2CuAl.CO3 and 2CuAl.CO3/Pd. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6411-4.

    Article  Google Scholar 

  25. Behrens M, Girgsdies F, Trunschke A, Schlogl R. Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem. 2009. https://doi.org/10.1002/ejic.200801216.

    Article  Google Scholar 

  26. Millar GJ, Holm IH, Uwins PJR, Drennan J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system. J Chem Soc Faraday Trans. 1998. https://doi.org/10.1039/a703954i.

    Article  Google Scholar 

  27. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008. https://doi.org/10.1007/s10973-007-8634-2.

    Article  Google Scholar 

  28. Kuhl S, Friedrich M, Armbruster M, Behrens M. Cu, Zn, Al layered double hydroxides as precursors for copper catalysts in methanol steam reforming-pH-controlled synthesis by microemulsion technique. J Mater Chem. 2012. https://doi.org/10.1039/c2jm16138a.

    Article  Google Scholar 

  29. Tan ZY, Yong DWY, Zhang ZH, Low HY, Chen LW, Chin WS. Nanostructured Cu/ZnO coupled composites: toward tunable Cu nanoparticle sizes and plasmon absorption. J Phys Chem C. 2013. https://doi.org/10.1021/jp4021855.

    Article  Google Scholar 

  30. Behrens M, Girgsdies F. Structural effects of Cu/Zn substitution in the malachite-rosasite system. Z Anorg Allg Chem. 2010. https://doi.org/10.1002/zaac.201000028.

    Article  Google Scholar 

  31. Zander S, Seidlhofer B, Behrens B. In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu, Zn hydroxycarbonates-consequences for the preparation of Cu/ZnO catalysts. Dalton Trans. 2012. https://doi.org/10.1039/c2dt31236k.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from National Key Research and Development Program of China (2017YFC0211802) and National Natural Science Foundation of China (21276223, 21676236) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Ling, C., Wang, Z. et al. The effect of Cu–Zn distribution in zincian malachite on the formation of individual CuO and ZnO particles. J Therm Anal Calorim 137, 1519–1525 (2019). https://doi.org/10.1007/s10973-019-08081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08081-3

Keywords

Navigation