Skip to main content
Log in

Thermal performance evaluation of a nanofluid‐based flat‐plate solar collector

An experimental study and analytical modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal performance of a flat-plate solar collector (FPSC) is investigated experimentally and analytically. The studied nanofluid is SiO2/deionized water with volumetric concentration up to 0.6% and nanoparticles diameter of 20–30 nm. The tests and also the modeling are performed based on ASHRAE standard and compared with each other to validate the developed model. The dynamic model is based on the energy balance in a control volume. The system of derived equations is solved by employing an implicit finite difference scheme. Moreover, the thermal conductivity and viscosity of SiO2 nanofluid have been investigated thoroughly. The measurement findings indicate that silica nanoparticles, despite their low thermal conductivity, have a great potential for improving the thermal performance of FPSC. Analyzing the characteristic parameters of solar collector efficiency reveals that the effect of nanoparticles on the performance improvement is more pronounced at higher values of reduced temperature. The thermal efficiency, working fluid outlet temperature and also absorber plate temperature of the modeling have been confirmed with experimental verification. A satisfactory agreement has been achieved between the results. The maximum percentage of deviation for working fluid outlet temperature and collector absorber plate temperature is 0.7% and 3.7%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(A_{\text{c}}\) :

Collector surface (m2)

\(C_{\text{p}}\) :

Specific heat at constant pressure (J kg−1 K−1)

\(D_{\text{h}}\) :

Hydraulic diameter (m)

\(d_{\text{np}}\) :

Nanoparticle size (m)

\(F_{\text{R}}\) :

Collector heat removal factor

\(h\) :

Convection heat transfer coefficient (W m−2 K−1)

\(I\) :

Incident solar irradiation (W m−2)

\(K\) :

Thermal conductivity (W m−1 K−1)

\(k_{\text{B}}\) :

Boltzmann constant (J K−1)

\(L\) :

Riser tube length (m)

\(m\) :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(Nu\) :

Nusselt number

\(P\) :

Riser pitch

\(Pr\) :

Prandtl number

\(\dot{Q}_{\text{u}}\) :

Useful gain of energy (W)

\(Re\) :

Reynolds number

\(T\) :

Temperature (K)

\(U_{\text{L}}\) :

Loss coefficient (W m−2 K−1)

\(V\) :

Volume (m3)

\(\dot{V}\) :

Volume flow rate (m3 s−1)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\delta\) :

Uncertainty

\(\Delta x\) :

Control volume length (m)

\(\eta\) :

Collector performance efficiency

\(\theta\) :

Tilt angle (°)

\(\mu_{{}}\) :

Viscosity (kg m−1 s−1)

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

Stefan–Boltzmann constant

\((\tau \alpha )_{\text{e}}\) :

Effective transmission–absorption coefficient (optical efficiency)

\(\varphi\) :

Volume fraction

a:

Air gap

am:

Ambient

ab:

Absorber

f:

Base fluid

g:

Glass

i:

Insulation

in:

Inlet

nf:

Nanofluid

out:

Outlet

np:

Nanoparticle

References

  1. Sheikhani H, Barzegarian R, Heydari A, Kianifar A, Kasaeian A, Gro G, Mahian O. A review of solar absorption cooling systems combined with various auxiliary energy devices. J Therm Anal Calorim. 2018;134(3):2197–212.

    Article  CAS  Google Scholar 

  2. Karami M. Experimental investigation of first and second laws in a direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7624-x.

    Article  Google Scholar 

  3. Satti JR, Das DK, Ray DR. Measurements of densities of propylene glycol based nanofluids and comparison with theory. J Therm Sci Eng Appl. 2016;8(2):1–11.

    Article  CAS  Google Scholar 

  4. Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7380-y.

    Article  Google Scholar 

  5. Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;27:104–15.

    Article  CAS  Google Scholar 

  6. Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf Part A Appl. 2018;73(4):254–76.

    Article  CAS  Google Scholar 

  7. Sabour M, Ghalambaz M, Chamkha A. Natural convection of nanofluids in a cavity: criteria for enhancement of nanofluids. Int J Numer Methods Heat Fluid Flow. 2017;27(7):1504–34.

    Article  Google Scholar 

  8. Mehryan SAM, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.

    Article  CAS  Google Scholar 

  9. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Int Mech Eng Congr Expo Proc ASME. 1995;66:99–105.

    Google Scholar 

  10. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7500-8.

    Article  Google Scholar 

  11. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshal JS, Siavashi M, Taylor RA, Niazmand H, Wangwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  12. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39:293–8.

    Article  CAS  Google Scholar 

  13. Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci. 2012;39:207–12.

    Article  CAS  Google Scholar 

  14. Nasrin R, Parvin S, Alim MA. Heat transfer by nanofluids through a flat plate solar collector. Procedia Eng. 2014;90:364–70.

    Article  CAS  Google Scholar 

  15. Jabari Moghadam A, Farzane-gord M, Sajadi M, Hoseyn-zadeh M. Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Therm Fluid Sci. 2014;58:9–14.

    Article  CAS  Google Scholar 

  16. Salavati S, Kianifar A, Niazmand H, Mahian O, Wongwises S. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5.

    Article  CAS  Google Scholar 

  17. Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA. Performance enhancement of a flat plate solar collector using TiO2 nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–53.

    Article  CAS  Google Scholar 

  18. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Heat transfer, pressure drop and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. ASME J Heat Transf. 2015;137(6):061011.

    Article  CAS  Google Scholar 

  19. Ahmadi A, Domiri Ganji D, Jafarkazemi F. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Convers Manag. 2016;126:1–11.

    Article  CAS  Google Scholar 

  20. Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. Hoboken: Wiley; 2013.

    Book  Google Scholar 

  21. Vincely DA, Natarajan E. Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Convers Manag. 2016;117:1–11.

    Article  CAS  Google Scholar 

  22. Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.

    Article  CAS  Google Scholar 

  23. Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2017;1:2. https://doi.org/10.1007/s10973-017-6865-4.

    Article  CAS  Google Scholar 

  24. Sharafeldin MA, Gróf G, Mahian O. Experimental study on the performance of a flat-plate collector using WO3/water nanofluids. Energy. 2017;141:2436–44.

    Article  CAS  Google Scholar 

  25. Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2–H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy. 2018;118:122–30.

    Article  CAS  Google Scholar 

  26. Hawwash AA, Rahman AKA, Nada SA, Ookawara S. Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Appl Therm Eng. 2018;130:363–74.

    Article  CAS  Google Scholar 

  27. Sharafeldin MA, Gróf G. Experimental investigation of flat plate solar collector using CeO2–water nanofluid. Energy Convers Manag. 2018;155:32–41.

    Article  CAS  Google Scholar 

  28. Sundar LS, Kirubeil A, Punnaiah V, Singh MK, Sousa ACM. Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int J Heat Mass Transf. 2018;127:422–35.

    Article  CAS  Google Scholar 

  29. Shamshirgaran S, Iskandar S, Assadi MK, Iskandar S, Iskandar S, Sharma KV. Energetic and exergetic performance of a solar flat-plate collector working with Cu nanofluid. J Sol Energy Eng. 2018;140(3):031002.

    Article  CAS  Google Scholar 

  30. Genc AM, Ezan MA, Turgut A. Thermal performance of a nanofluid-based flat plate solar collector: a transient numerical study. Appl Therm Eng. 2018;130:395–407.

    Article  CAS  Google Scholar 

  31. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2016;28(2):385–97.

    Article  CAS  Google Scholar 

  32. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.

    Article  CAS  Google Scholar 

  33. Hajipour M, Dehkordi AM. Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Therm Fluid Sci. 2014;53:49–56.

    Article  CAS  Google Scholar 

  34. Kordi M, Moghadam AJ, Afshari E. Effects of cooling passages and nanofluid coolant on thermal performance of PEM fuel cells. J Electrochem Energy Convers Storage. 2019;16(3):031001.

    Article  Google Scholar 

  35. Adriana MA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.

    Article  CAS  Google Scholar 

  36. Maxwell JC. A treatise electricity magnetism. 2nd ed. Oxford: Clarendon Press; 1881.

    Google Scholar 

  37. Moradi Dalvand H, Jabari Moghadam A. Experimental investigation of a water/nanofluid jacket performance in stack heat recovery. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7220-0.

    Article  Google Scholar 

  38. Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2018;131(2):1577–86.

    Article  CAS  Google Scholar 

  39. Abdolbaqi MK, Sidik NAC, Rahim MFA, Mamat R, Azmi WH, Yazid MNAWM, Najafi G. Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nano fluids. Int Commun Heat Mass. 2016;77:54–63.

    Article  CAS  Google Scholar 

  40. Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49(4):1038–43.

    Article  CAS  Google Scholar 

  41. Sharma KV, Sarm PK, Azmi WH, Mamat R, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microscale Nanoscale Therm Fluid Transp Phenom. 2012;3(4):1–25.

    CAS  Google Scholar 

  42. Mahian O, Kianifar A, Zeinali S, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.

    Article  CAS  Google Scholar 

  43. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci. 2013;51:103–11.

    Article  CAS  Google Scholar 

  44. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    Article  CAS  Google Scholar 

  45. Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys. 1906;324:289–306.

    Article  Google Scholar 

  46. Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renew Energy. 2017;114:1376–93.

    Article  CAS  Google Scholar 

  47. Bashirnezhad K, Bazri S, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  48. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  49. Meybodi MK, Daryasafar A, Koochi MM, Moghadasi J, Meybodi RB, Ghahfarokhi AK. A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J Taiwan Inst Chem Eng. 2016;58:19–27.

    Article  CAS  Google Scholar 

  50. ANSI/ASHRAE Standard 93. Methods of testing to determine the thermal performance of solar collectors. Atlanta, GA, USA; 2003.

  51. Rojas D, Beermann J, Klein SA, Reindl DT. Thermal performance testing of flat-plate collectors. Sol Energy. 2008;82(8):746–57.

    Article  CAS  Google Scholar 

  52. Kalogirou SA. Solar energy engineering: processes and systems. 1st ed. Oxford: Elsevier; 2009.

    Google Scholar 

  53. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18.

    Article  CAS  Google Scholar 

  54. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME. Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media. Appl Therm Eng. 2017;127:1506–17.

    Article  Google Scholar 

  55. Moffat RJ. Using uncertainty analysis in the planning of an experiment. J Fluids Eng. 1985;107:173–8.

    Article  CAS  Google Scholar 

  56. Ghadiri M, Sardarabadi M, Pasandideh-fard M, Jabari Moghadam A. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag. 2015;103:468–76.

    Article  CAS  Google Scholar 

  57. Tagliafico LA, Scarpa F, De Rosa M. Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors—a review. Renew Sustain Energy Rev. 2014;30:526–37.

    Article  Google Scholar 

  58. Zhou F, Ji J, Yuan W, Modjinou M, Zhao X, Huang S. Experimental study and performance prediction of the PCM-antifreeze solar thermal system under cold weather conditions. Appl Therm Eng. 2019;146:526–39.

    Article  Google Scholar 

  59. Bazdidi-tehrani F, Khabazipur A, Vasefi SI. Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector. Renew Energy. 2018;122:406–18.

    Article  CAS  Google Scholar 

  60. Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  61. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshal JS, Taylor RA, Abu-Nada A, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  62. Hamed M, Fellah A, Ben BA. Parametric sensitivity studies on the performance of a flat plate solar collector in transient behavior. Energy Convers Manag. 2014;78:938–47.

    Article  Google Scholar 

  63. Rejeb O, Dhaou H, Jemni A. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renew Energy. 2015;77:43–50.

    Article  Google Scholar 

  64. Hollands KGT, Unny TE, Raithby GD, Konicek L. Free convective heat transfer across inclined air layers. J Heat Transf. 1976;98:189–93.

    Article  CAS  Google Scholar 

  65. Swinbank WC. Long-wave radiation from clear skies. QJR Meteorol Soc. 1963;89:339–48.

    Article  Google Scholar 

  66. Zima W, Dziewa P. Modelling of liquid flat-plate solar collector operation in transient states. Proc IMechE Part A J Power Energy. 2010;225:53–62.

    Article  CAS  Google Scholar 

  67. Saedodin S, Zamzamian SAH, Nimvari ME, Wongwises S, Jouybari HJ. Performance evaluation of a flat-plate solar collector filled with porous metal foam: experimental and numerical analysis. Energy Convers Manag. 2017;153:278–87.

    Article  Google Scholar 

  68. Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM J. 1967;11:215–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Javaniyan Jouybari or M. Eshagh Nimvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouybari, H.J., Nimvari, M.E. & Saedodin, S. Thermal performance evaluation of a nanofluid‐based flat‐plate solar collector. J Therm Anal Calorim 137, 1757–1774 (2019). https://doi.org/10.1007/s10973-019-08077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08077-z

Keywords

Navigation