Abstract
The thermal performance of a flat-plate solar collector (FPSC) is investigated experimentally and analytically. The studied nanofluid is SiO2/deionized water with volumetric concentration up to 0.6% and nanoparticles diameter of 20–30 nm. The tests and also the modeling are performed based on ASHRAE standard and compared with each other to validate the developed model. The dynamic model is based on the energy balance in a control volume. The system of derived equations is solved by employing an implicit finite difference scheme. Moreover, the thermal conductivity and viscosity of SiO2 nanofluid have been investigated thoroughly. The measurement findings indicate that silica nanoparticles, despite their low thermal conductivity, have a great potential for improving the thermal performance of FPSC. Analyzing the characteristic parameters of solar collector efficiency reveals that the effect of nanoparticles on the performance improvement is more pronounced at higher values of reduced temperature. The thermal efficiency, working fluid outlet temperature and also absorber plate temperature of the modeling have been confirmed with experimental verification. A satisfactory agreement has been achieved between the results. The maximum percentage of deviation for working fluid outlet temperature and collector absorber plate temperature is 0.7% and 3.7%, respectively.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(A_{\text{c}}\) :
-
Collector surface (m2)
- \(C_{\text{p}}\) :
-
Specific heat at constant pressure (J kg−1 K−1)
- \(D_{\text{h}}\) :
-
Hydraulic diameter (m)
- \(d_{\text{np}}\) :
-
Nanoparticle size (m)
- \(F_{\text{R}}\) :
-
Collector heat removal factor
- \(h\) :
-
Convection heat transfer coefficient (W m−2 K−1)
- \(I\) :
-
Incident solar irradiation (W m−2)
- \(K\) :
-
Thermal conductivity (W m−1 K−1)
- \(k_{\text{B}}\) :
-
Boltzmann constant (J K−1)
- \(L\) :
-
Riser tube length (m)
- \(m\) :
-
Mass (kg)
- \(\dot{m}\) :
-
Mass flow rate (kg s−1)
- \(Nu\) :
-
Nusselt number
- \(P\) :
-
Riser pitch
- \(Pr\) :
-
Prandtl number
- \(\dot{Q}_{\text{u}}\) :
-
Useful gain of energy (W)
- \(Re\) :
-
Reynolds number
- \(T\) :
-
Temperature (K)
- \(U_{\text{L}}\) :
-
Loss coefficient (W m−2 K−1)
- \(V\) :
-
Volume (m3)
- \(\dot{V}\) :
-
Volume flow rate (m3 s−1)
- \(\alpha\) :
-
Thermal diffusivity (m2 s−1)
- \(\delta\) :
-
Uncertainty
- \(\Delta x\) :
-
Control volume length (m)
- \(\eta\) :
-
Collector performance efficiency
- \(\theta\) :
-
Tilt angle (°)
- \(\mu_{{}}\) :
-
Viscosity (kg m−1 s−1)
- \(\rho\) :
-
Density (kg m−3)
- \(\sigma\) :
-
Stefan–Boltzmann constant
- \((\tau \alpha )_{\text{e}}\) :
-
Effective transmission–absorption coefficient (optical efficiency)
- \(\varphi\) :
-
Volume fraction
- a:
-
Air gap
- am:
-
Ambient
- ab:
-
Absorber
- f:
-
Base fluid
- g:
-
Glass
- i:
-
Insulation
- in:
-
Inlet
- nf:
-
Nanofluid
- out:
-
Outlet
- np:
-
Nanoparticle
References
Sheikhani H, Barzegarian R, Heydari A, Kianifar A, Kasaeian A, Gro G, Mahian O. A review of solar absorption cooling systems combined with various auxiliary energy devices. J Therm Anal Calorim. 2018;134(3):2197–212.
Karami M. Experimental investigation of first and second laws in a direct absorption solar collector using hybrid Fe3O4/SiO2 nanofluid. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7624-x.
Satti JR, Das DK, Ray DR. Measurements of densities of propylene glycol based nanofluids and comparison with theory. J Therm Sci Eng Appl. 2016;8(2):1–11.
Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7380-y.
Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;27:104–15.
Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf Part A Appl. 2018;73(4):254–76.
Sabour M, Ghalambaz M, Chamkha A. Natural convection of nanofluids in a cavity: criteria for enhancement of nanofluids. Int J Numer Methods Heat Fluid Flow. 2017;27(7):1504–34.
Mehryan SAM, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Int Mech Eng Congr Expo Proc ASME. 1995;66:99–105.
Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7500-8.
Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshal JS, Siavashi M, Taylor RA, Niazmand H, Wangwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.
Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy. 2012;39:293–8.
Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Therm Fluid Sci. 2012;39:207–12.
Nasrin R, Parvin S, Alim MA. Heat transfer by nanofluids through a flat plate solar collector. Procedia Eng. 2014;90:364–70.
Jabari Moghadam A, Farzane-gord M, Sajadi M, Hoseyn-zadeh M. Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Therm Fluid Sci. 2014;58:9–14.
Salavati S, Kianifar A, Niazmand H, Mahian O, Wongwises S. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5.
Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA. Performance enhancement of a flat plate solar collector using TiO2 nanofluid and polyethylene glycol dispersant. J Clean Prod. 2015;92:343–53.
Mahian O, Kianifar A, Sahin AZ, Wongwises S. Heat transfer, pressure drop and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. ASME J Heat Transf. 2015;137(6):061011.
Ahmadi A, Domiri Ganji D, Jafarkazemi F. Analysis of utilizing Graphene nanoplatelets to enhance thermal performance of flat plate solar collectors. Energy Convers Manag. 2016;126:1–11.
Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. Hoboken: Wiley; 2013.
Vincely DA, Natarajan E. Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation. Energy Convers Manag. 2016;117:1–11.
Verma SK, Tiwari AK, Chauhan DS. Experimental evaluation of flat plate solar collector using nanofluids. Energy Convers Manag. 2017;134:103–15.
Stalin PMJ, Arjunan TV, Matheswaran MM, Sadanandam N. Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector. J Therm Anal Calorim. 2017;1:2. https://doi.org/10.1007/s10973-017-6865-4.
Sharafeldin MA, Gróf G, Mahian O. Experimental study on the performance of a flat-plate collector using WO3/water nanofluids. Energy. 2017;141:2436–44.
Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2–H2O nanofluids on thermal efficiency of the flat plate solar collector. Renew Energy. 2018;118:122–30.
Hawwash AA, Rahman AKA, Nada SA, Ookawara S. Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Appl Therm Eng. 2018;130:363–74.
Sharafeldin MA, Gróf G. Experimental investigation of flat plate solar collector using CeO2–water nanofluid. Energy Convers Manag. 2018;155:32–41.
Sundar LS, Kirubeil A, Punnaiah V, Singh MK, Sousa ACM. Effectiveness analysis of solar flat plate collector with Al2O3 water nanofluids and with longitudinal strip inserts. Int J Heat Mass Transf. 2018;127:422–35.
Shamshirgaran S, Iskandar S, Assadi MK, Iskandar S, Iskandar S, Sharma KV. Energetic and exergetic performance of a solar flat-plate collector working with Cu nanofluid. J Sol Energy Eng. 2018;140(3):031002.
Genc AM, Ezan MA, Turgut A. Thermal performance of a nanofluid-based flat plate solar collector: a transient numerical study. Appl Therm Eng. 2018;130:395–407.
Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2016;28(2):385–97.
Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.
Hajipour M, Dehkordi AM. Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Therm Fluid Sci. 2014;53:49–56.
Kordi M, Moghadam AJ, Afshari E. Effects of cooling passages and nanofluid coolant on thermal performance of PEM fuel cells. J Electrochem Energy Convers Storage. 2019;16(3):031001.
Adriana MA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.
Maxwell JC. A treatise electricity magnetism. 2nd ed. Oxford: Clarendon Press; 1881.
Moradi Dalvand H, Jabari Moghadam A. Experimental investigation of a water/nanofluid jacket performance in stack heat recovery. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7220-0.
Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2018;131(2):1577–86.
Abdolbaqi MK, Sidik NAC, Rahim MFA, Mamat R, Azmi WH, Yazid MNAWM, Najafi G. Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nano fluids. Int Commun Heat Mass. 2016;77:54–63.
Xuan Y, Li Q, Hu W. Aggregation structure and thermal conductivity of nanofluids. AIChE J. 2003;49(4):1038–43.
Sharma KV, Sarm PK, Azmi WH, Mamat R, Kadirgama K. Correlations to predict friction and forced convection heat transfer coefficients of water based nanofluids for turbulent flow in a tube. Int J Microscale Nanoscale Therm Fluid Transp Phenom. 2012;3(4):1–25.
Mahian O, Kianifar A, Zeinali S, Wongwises S. Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int J Heat Mass Transf. 2016;99:792–804.
Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD. Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci. 2013;51:103–11.
Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.
Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys. 1906;324:289–306.
Bellos E, Tzivanidis C. Parametric analysis and optimization of an Organic Rankine Cycle with nanofluid based solar parabolic trough collectors. Renew Energy. 2017;114:1376–93.
Bashirnezhad K, Bazri S, Goodarzi M, Dahari M, Mahian O, Dalkılıça AS, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.
Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.
Meybodi MK, Daryasafar A, Koochi MM, Moghadasi J, Meybodi RB, Ghahfarokhi AK. A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO. J Taiwan Inst Chem Eng. 2016;58:19–27.
ANSI/ASHRAE Standard 93. Methods of testing to determine the thermal performance of solar collectors. Atlanta, GA, USA; 2003.
Rojas D, Beermann J, Klein SA, Reindl DT. Thermal performance testing of flat-plate collectors. Sol Energy. 2008;82(8):746–57.
Kalogirou SA. Solar energy engineering: processes and systems. 1st ed. Oxford: Elsevier; 2009.
Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renew Energy. 2017;114:1407–18.
Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME. Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media. Appl Therm Eng. 2017;127:1506–17.
Moffat RJ. Using uncertainty analysis in the planning of an experiment. J Fluids Eng. 1985;107:173–8.
Ghadiri M, Sardarabadi M, Pasandideh-fard M, Jabari Moghadam A. Experimental investigation of a PVT system performance using nano ferrofluids. Energy Convers Manag. 2015;103:468–76.
Tagliafico LA, Scarpa F, De Rosa M. Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors—a review. Renew Sustain Energy Rev. 2014;30:526–37.
Zhou F, Ji J, Yuan W, Modjinou M, Zhao X, Huang S. Experimental study and performance prediction of the PCM-antifreeze solar thermal system under cold weather conditions. Appl Therm Eng. 2019;146:526–39.
Bazdidi-tehrani F, Khabazipur A, Vasefi SI. Flow and heat transfer analysis of TiO2/water nanofluid in a ribbed flat-plate solar collector. Renew Energy. 2018;122:406–18.
Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2007.
Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshal JS, Taylor RA, Abu-Nada A, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.
Hamed M, Fellah A, Ben BA. Parametric sensitivity studies on the performance of a flat plate solar collector in transient behavior. Energy Convers Manag. 2014;78:938–47.
Rejeb O, Dhaou H, Jemni A. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renew Energy. 2015;77:43–50.
Hollands KGT, Unny TE, Raithby GD, Konicek L. Free convective heat transfer across inclined air layers. J Heat Transf. 1976;98:189–93.
Swinbank WC. Long-wave radiation from clear skies. QJR Meteorol Soc. 1963;89:339–48.
Zima W, Dziewa P. Modelling of liquid flat-plate solar collector operation in transient states. Proc IMechE Part A J Power Energy. 2010;225:53–62.
Saedodin S, Zamzamian SAH, Nimvari ME, Wongwises S, Jouybari HJ. Performance evaluation of a flat-plate solar collector filled with porous metal foam: experimental and numerical analysis. Energy Convers Manag. 2017;153:278–87.
Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM J. 1967;11:215–34.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jouybari, H.J., Nimvari, M.E. & Saedodin, S. Thermal performance evaluation of a nanofluid‐based flat‐plate solar collector. J Therm Anal Calorim 137, 1757–1774 (2019). https://doi.org/10.1007/s10973-019-08077-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-019-08077-z