Skip to main content
Log in

Isothermal calorimetry protocols to monitor the shelf life and aftermarket follow-up of fresh cut vegetables

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Protocols and guidelines were assessed in order to apply isothermal calorimetry as a complementary/alternative method to monitoring, during the shelf life and the microbial growth/metabolism in commercial fresh cut vegetables with random initial microbial population. Moreover, the endogenous microbial population was used as a biosensor to check the modifications occurred during long storage for aftermarket characterization in the frame of vegetable waste treatments. Validation was obtained following ready-to-use carrots highlighting the effects of the different exposed surfaces (cylinders, sticks and à-la-julienne cut) on the overall spoiling process during shelf life and green salad stored up to 14 days with regard to the aftermarket characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aked J. Fruits and vegetables. In: Kilcast D, Subramanian P, editors. The stability and shelf life of food. Cambridge: Woodhead publishing; 2000. p. 250–75.

    Google Scholar 

  2. Singh RP. Scientific principles of shelf life evaluation. In: Man CMD, Jones AA, editors. Shelf life evaluation of foods. London: Blackie Academic and Professionals; 1994. p. 3–26.

    Chapter  Google Scholar 

  3. Barry-Ryan C, O’Beirne D. Quality and shelf life of fresh cut slices as affected by slicing method. J Food Sci. 1998;63:851–6.

    Article  CAS  Google Scholar 

  4. Carlin F, Nguyen-the C, Cudennec P, Reich M. Microbiological spoilage of ready-to-use grated carrots. Sci Alim. 1989;9:371–86.

    Google Scholar 

  5. Willocx F, Hendrickx M, Tobback P. The influence of temperature and gas composition on the evolution of microbial and visual quality of minimally processed endive. In: Singh RP, Oliveira FAR, editors. Minimally processing of foods and process optimization: an interface. Boca Raton: CRC Press; 1994. p. 475–92.

    Google Scholar 

  6. Garg N, Churey JJ, Splittstoesser DF. Effect of processing conditions on the microflora of fresh cut vegetables. J Food Prot. 1990;53:701–3.

    Article  PubMed  Google Scholar 

  7. Marchetti R, Casadei MA, Guerzoni ME. Microbial population dynamics in ready-to-use vegetable salads in Italy. Food Sci. 1992;2:97–108.

    Google Scholar 

  8. Singh RP, Anderson BA. The major types of food spoilage: an overview. In: Steele R, editor. Understanding and measuring the shelf-life of food. Boca Raton: CRC Press LLC; 2004. p. 3–23. https://doi.org/10.1533/9781855739024.1.3.

    Chapter  Google Scholar 

  9. Nguyen-the C, Carlin F. The microbiology of minimally processed fresh fruits and vegetables. Crit Rev Food Sci Nutr. 1994;34:371–401.

    Article  CAS  PubMed  Google Scholar 

  10. der Fro H, Martins CG, De Souza KL, Landgraf M, Franco BD, Destro MT. Minimally processed vegetable salads: microbial quality evaluation. J Food Prot. 2007;70:1277–80.

    Article  Google Scholar 

  11. Izumi H, Watada AE, Ko NP, Douglas W. Controlled atmosphere storage of carrot slices, sticks and shreds. Postharvest Biol and Technol. 1996;9:165–72.

    Article  CAS  Google Scholar 

  12. Manzano M, Citterio B, Maifreni M, Paganessi M, Comi C. Microbial and sensory quality of vegetables for soup packaged in different atmospheres. Sci Food Agric. 1995;67:521–9.

    Article  CAS  Google Scholar 

  13. Jacxsens L, Devlieghere F, Debevere J. Temperature dependence of shelf-life as affected by microbial proliferation and sensory quality of equilibrium modified atmosphere packaged fresh produce. Postharvest Biol Technol. 2002;26:59–73.

    Article  CAS  Google Scholar 

  14. Plazzotta S, Manzocco L, Nicoli MC. Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci Technol. 2017;63:51–9.

    Article  CAS  Google Scholar 

  15. Arvanitoyannis I, Varzakas T. Vegetable waste management: treatment methods and potential uses of treated waste. In: Arvanitoyannis I, editor. Waste management for the food industries. A volume in food science and technology. Amsterdam: Elsevier Academic Press; 2008. p. 703–61. ISBN 9780123736543.

  16. San Martin D, Ramos S, Zufía J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016;198:68–74. https://doi.org/10.1016/j.foodchem.2015.11.035.

    Article  CAS  PubMed  Google Scholar 

  17. Ansorena MR, Goñi MG, Aguëro MV, Roura SI, Di Scala KC. Application of the general stability index method to assess the quality of butter lettuce during postharvest storage using a multi-quality indices analysis. J Food Eng. 2009;92:317–23.

    Article  CAS  Google Scholar 

  18. Giovenzana V, Beghi R, Buratti S, Civelli R, Guidetti R. Monitoring of fresh-cut Valerianella locusta Laterr. Shelf life by electronic nose and VIS–NIR spectroscopy. Talanta. 2014;120:368–75.

    Article  CAS  PubMed  Google Scholar 

  19. Malakar PK, Brocklehurst TF, Mackie AR, Wilson PDG, Zwietering MH, van’t Riet K. Microgradients in bacterial colonies: use of fluorescence ratio imaging, a non-invasive technique. Int J Food Microbiol. 2000;56:71–80.

    Article  CAS  PubMed  Google Scholar 

  20. Nicoli MC. Shelf life assessment of food. Boca Raton: CRC Press; 2016. ISBN 9781138199347.

  21. Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH. A review of recent developments in modelling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J. 2004;17:15–26.

    Article  CAS  Google Scholar 

  22. Boe I, Lovrien R. Cell counting and carbon utilization velocities via microbial calorimetry. Biotechnol Bioeng. 1990;35:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Menert A, Liiders M, Kurissoo T, Vilu R. Microcalorimetric monitoring of anaerobic digestion processes. J Therm Anal Calorim. 2001;64:281–91.

    Article  CAS  Google Scholar 

  24. Wadsö L, Galindo FG. Isothermal calorimetry for biological applications in food science and technology. Food Control. 2009;20:956–61.

    Article  CAS  Google Scholar 

  25. Braissant O, Wirz D, Goepfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett. 2010;303:1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mihhalevski A, Sarand I, Viiard E, Salumets A, Paalme T. Growth characterization of individual rye sourdough bacteria by isothermal microcalorimetry. J Appl Microbiol. 2011;110:529–40.

    Article  CAS  PubMed  Google Scholar 

  27. Riva M, Fessas D, Schiraldi A. Isothermal calorimetry approach to evaluate shelf life of foods. Thermochim Acta. 2001;370:73–81.

    Article  CAS  Google Scholar 

  28. Wilson RDG, Brocklehurst TF, Arino S, Thuault D, Jakobsen M, Lange M, Farkas J, Wimpenny JWT, van Impe JF. Modelling microbial growth in structured foods: towards a unified approach. Int J Food Microbiol. 2002;73:275–89.

    Article  CAS  PubMed  Google Scholar 

  29. Antwi M, Geeraerd AH, Vereecken KM, Jenne R, Bernaerts K, Van Impe JF. Influence of a gel microstructure as modified by gelatin concentration on Listeria innocua growth. Innov Food Sci Emerg Technol. 2006;7:124–31.

    Article  CAS  Google Scholar 

  30. Lago N, Legido JL, Paz Andrade MI, Arias I, Casas LM. Microcalorimetric study on the growth and metabolism of Pseudomonas aeruginosa. J Therm Anal Calorim. 2011;105:651–5.

    Article  CAS  Google Scholar 

  31. Liu J-S, Marison IW, von Stockar U. Anaerobic calorimetry of the growth of Lactobacillus helveticus using a highly sensitive BIO-RCI. J Therm Anal Calorim. 1999;56:1191–5.

    Article  CAS  Google Scholar 

  32. Stulova I, Kabanova N, Krišciunaite T, Laht T-M, Vilu R. The effect of milk heat treatment on the growth characteristics of lactic acid bacteria. Agron Res. 2011;9:473–8.

    Google Scholar 

  33. Pu S, Ma Z, Wang Q. Anti-Staphylococcus aureus evaluation of gallic acid by isothermal microcalorimetry and principle component analysis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7726-5.

    Article  Google Scholar 

  34. Vazquez C, Lago N, Mato MM, Esarte L, Legido JL. Study of the growth of Enterococcus faecalis, Escherichia coli and their mixtures by microcalorimetry. J Therm Anal Calorim. 2016;125:739–44. https://doi.org/10.1007/s10973-015-5203-y.

    Article  CAS  Google Scholar 

  35. Jiangbing XuJ, Feng Y, Barros N, Zhong L, Chen R, Lin X. Exploring the potential of microcalorimetry to study soil microbial metabolic diversity. J Therm Anal Calorim. 2017;127:1457–65. https://doi.org/10.1007/s10973-016-5952-2.

    Article  CAS  Google Scholar 

  36. Yao J, Wang F, Tian L, Zhou Y, Chen HL, Chen K, Gai N, Zhuang RS, Maskow T, Ceccanti B, Zaray G. Studying the toxic effect of cadmium and hexavalent chromium on microbial activity of a soil and pure microbe. A microcalorimetric method. J Therm Anal Calorim. 2009;95:517–24.

    Article  CAS  Google Scholar 

  37. Gardikis K, Signorelli M, Ferrario M, Schiraldi A, Fortina MG, Hatziantoniou S, Demetzos C, Fessas D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced Drug Delivery Nano Systems: a calorimetric approach. Int J Pharm. 2017;516:178–84.

    Article  CAS  PubMed  Google Scholar 

  38. Perry BF, Beezer AE, Miles HJV. Flow microcalorimetry studies of yeast growth: fundamental aspects. J Appl Bacteriol. 1979;47:527–37.

    Article  CAS  PubMed  Google Scholar 

  39. Schiraldi A. Microbial growth and metabolism: modelling and calorimetric characterization. Pure Appl Chem. 1995;67:1873–8.

    Article  CAS  Google Scholar 

  40. Singh G, Kawatra A, Sehgal S. Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods Hum Nutr. 2001;56:359–64.

    Article  CAS  PubMed  Google Scholar 

  41. Atlas RM. Handbook of Microbiological Media. 3rd ed. Boca Raton: CRC Press Inc.; 2004. ISBN 9780429129032.

  42. Fessas D, Schiraldi A. Isothermal calorimetry and microbial growth: beyond modeling. J Therm Anal Calorim. 2017;130:567–72. https://doi.org/10.1007/s10973-017-6515-x.

    Article  CAS  Google Scholar 

  43. Franzetti L, Galli A. Microbial quality indicators of minimally processed stick carrots. Ann Microbiol Enzimol. 1999;49:137–44.

    Google Scholar 

  44. Zwietering MH, Jongenburger I, Rombouts FM, Van ‘t riet K. Modelling of the bacterial growth curve. Appl Envir Microbiol. 1990;56:875–1881.

    Google Scholar 

  45. Surjadinata BB, Cisneros-Zevallos L. Modelling wound induced respiration of fresh cut carrots (Daucus carota L.). Food Eng Phys Prop. 2003;68:2735–40.

    CAS  Google Scholar 

  46. Barry-Ryan C, O’Beirne D. Effects of peeling methods on the quality of ready-to-use carrot slices. J Food Sci Technol. 2000;35:243–54.

    Article  CAS  Google Scholar 

  47. Buick RK, Damoglou AP. The effect of vacuum packaging on the microbial spoilage and shelf-life of ready-to-use sliced carrots. J Sci Food Agric. 1987;38:167–75.

    Article  Google Scholar 

  48. Varoquaux P, Wiley RC. Biological and biochemical changes in minimally processed refrigerated fruits and vegetables. In: Willey RC, editor. Minimally processed refrigerated fruits and vegetables. New York: Chapman & Hall; 1994. p. 226–68.

    Chapter  Google Scholar 

  49. Ferrante A, Martinetti L, Maggiore T. Biochemical changes in cut vs. intact lamb’s lettuce (Valerianella olitoria) leaves during storage. Int J Food Sci Technol. 2009;44:1050–6.

    Article  CAS  Google Scholar 

  50. Negi PS, Handa AK. Structural deterioration of the produce: the breakdown of cell wall components. In: Paliyath G, Murr DP, Handa AK, Lurie S, editors. Postharvest biology and technology of fruits, vegetables, and flowers. 1st ed. Hoboken: Wiley-Blackwell; 2008. p. 162–94. ISBN 978-0-813-80408-8.

  51. Swinnen IAM, Bernaerts K, Gysemans K, van Impe JF. Quantifying microbial lag phenomena due to a sudden rise in temperature: a systematic macroscopic study. Int J Food Microbiol. 2005;100:85–96.

    Article  CAS  PubMed  Google Scholar 

  52. Wang G, Mayes MA, Gu L, Schadt CW. Representation of dormant and active microbial dynamics for ecosystem modeling. PLoS ONE. 2014;9:e89252. https://doi.org/10.1371/journal.pone.0089252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Giusti M, Aurigemma C, Marinelli L, Tufi D, De Medici D, Di Pasquale S, De Vito C, Boccia A. The evaluation of microbiological safety of fresh ready-to-eat vegetables produced by different technologies in Italy. J Appl Microbiol. 2010;109:996–1006.

    Article  CAS  PubMed  Google Scholar 

  54. Lavelli V, Pagliarini E, Ambrosoli R, Minati JL, Zanoni B. Physicochemical, microbial, and sensory parameters as indices to evaluate the quality of minimally processed carrots. Postharvest Biol Technol. 2006;40:34–40.

    Article  CAS  Google Scholar 

  55. Ferrante A, Maggiore T. Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables. Postharvest Biol Technol. 2007;45:73–80.

    Article  CAS  Google Scholar 

  56. Ferrante A, Incrocci L, Maggini R, Serra G, Tognoni F. Colour changes of fresh-cut leafy vegetables during storage. J Food Agric Environ. 2004;2:40–4.

    Google Scholar 

  57. Abadias M, Usall J, Anguera M, Solsona C. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail. Int J Food Microbiol. 2008;123:121–9.

    Article  CAS  PubMed  Google Scholar 

  58. Caldera L, Franzetti L. Effect of storage temperature on the microbial composition of ready-to-use vegetables. Curr Microbiol. 2014;68:133–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (Prot. 957/ric, 28/12/2012), through the Project 2012ZN3KJL “Long Life, High Sustainability.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Fessas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haman, N., Signorelli, M., Duce, C. et al. Isothermal calorimetry protocols to monitor the shelf life and aftermarket follow-up of fresh cut vegetables. J Therm Anal Calorim 137, 1673–1680 (2019). https://doi.org/10.1007/s10973-019-08064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08064-4

Keywords

Navigation