Skip to main content
Log in

Gold- and silver-containing bionanocomposites based on humic substances extracted from coals

A thermal analysis study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal stability, structural peculiarities and thermal destruction of functional groups of the matrix, which are responsible for the stabilization of the nanosystems, of the gold- and silver-containing medicinally important water-soluble nanocomposites synthesized from therapeutic humic substances, isolated from brown coal of Baga Nuur field of Mongolian sources, have been studied. A crucial problem in biomedical and engineering application of the silver- and gold-containing nanocomposites is their stability upon heating, for example, during sterilization at high temperatures in medicine or laser action, which can heat a system, in plasmon technologies. All compounds have been investigated by complex modern physical–chemical methods (electron paramagnetic resonance and infrared spectroscopies, X-ray diffraction analysis, transmission electron microscopy and others). Thermal analysis of Ag0 and Au0 nanocomposites on the basis of humic matrices, as well as the initial humic substance, has been carried out. It is shown that the thermal decomposition of the nanocomposites depends on the nature of the metal. It is found that stable zero-valent nanoparticles of noble metals with an average particle size of 6–17 nm are formed in a natural matrix. The nanocomposites obtained are aggregatively stable for a long time, preserving their properties intact, that is extremely important for promising medicinal substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boisselier E, Didier A. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.

    Article  CAS  PubMed  Google Scholar 

  2. Hill JW. Collodial silver medical uses. Toxicology & manufacture. Washington: Clear Springs Press; 2009.

    Google Scholar 

  3. Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44:410–22.

    Article  CAS  PubMed  Google Scholar 

  4. Pomogailo AD, Dzhardimalieva GI. Nanostructured materials preparation via condensation ways. Dordrecht: Springer; 2014.

    Book  Google Scholar 

  5. Pallem VL, Stretz HA, Wells MJM. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ Sci Technol. 2009;43:7531–5.

    Article  CAS  PubMed  Google Scholar 

  6. Stevenson FJ. Humus chemistry: genesis, composition and reactions. 2nd ed. New York: Willey; 1994.

    Google Scholar 

  7. Sutton R, Sposito G. Molecular structure in soil humic substances: the new view. Environ Sci Technol. 2005;39:9009–15.

    Article  CAS  PubMed  Google Scholar 

  8. Klöcking R, Helbig B. Medical aspect and applications of humic substances. In: Steinbüchel A, Marchessault RH, editors. Biopolymers for medical and pharmaceutical applications. Weinheim: Wiley; 2005. p. 3–16.

    Google Scholar 

  9. Xu J, Wu J, He Y. Functions of natural organic matter in changing environment. Dordrecht: Springer; 2013.

    Book  Google Scholar 

  10. Steinberg CEW. Ecology of humic substances in freshwaters. Berlin: Springer; 2003.

    Book  Google Scholar 

  11. Perminova IV, Hatfield K, Hertkorn N. Use of humic substances to remediate polluted environments: from theory to practice. Dordrecht: Springer; 2005.

    Book  Google Scholar 

  12. Piccolo A. The supramolecular structure of humic substances. Soil Sci. 2001;166:810–32.

    Article  CAS  Google Scholar 

  13. Khutsishvili SS, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Strong stabilization properties of humic substance matrixes for silver bionanocomposites. Micro Nano Lett. 2017;12:418–21.

    Article  CAS  Google Scholar 

  14. Antonelli ML, Calace N, Fortini C, Petronio BM, Pietroletti M, Pusceddu P. Calorimetric investigation of complex formation of some humic compounds. J Therm Anal Calorim. 2002;70:291–7.

    Article  CAS  Google Scholar 

  15. Lesnichaya MV, Aleksandrova GP, Dolmaa G, Sapozhnikov AN, Sukhov BG, Regdel D, Trofimov BA. Synthesis of silver-containing nanocomposites based on humic substances of brown coal and their antioxidant activity. Dokl Chem. 2014;456:72–5.

    Article  CAS  Google Scholar 

  16. Lesnichaya MV, Aleksandrova GP, Sukhov BG, Trofimov BA, Dolmaa G, Nomintsetseg B, Regdel D, Sapozhnikov AN. Features of gold nanoparticle formation in matrices of humic substances of different origin. Dokl Chem. 2015;460:13–6.

    Article  CAS  Google Scholar 

  17. Kučerík J, Kislinger J, Majzlík P, Pekař M. Correlation of humic substances chemical properties and their thermo-oxidative degradation kinetics. J Therm Anal Calorim. 2009;98:207–14.

    Article  CAS  Google Scholar 

  18. Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. J Therm Anal Calorim. 2008;92:297–300.

    Article  CAS  Google Scholar 

  19. Tikhonov NI, Khutsishvili SS, Lesnichaya MV, Dolmaa G, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Paramagnetic properties and antioxidant activity of metal-containing bionanocomposites based on humic substances. Magn Reson Solids. 2016;18:16104.

    Google Scholar 

  20. Poole CP. Electron spin resonance: a comprehensive treatise on experimental techniques. 2nd ed. Dover: Dover Publications; 1997.

    Google Scholar 

  21. Barret CA, Massalsky TB. structure of metals. New York: McGraw-Hill; 1966.

    Google Scholar 

  22. Pilawa B, Więckowski AB. Groups of paramagnetic centres in coal samples with different carbon contents. Res Chem Intermed. 2007;33:825–39.

    Article  CAS  Google Scholar 

  23. González-Pérez M, Martin-Neto L, Colnago LA, Milori DMBP, de Camargo OA, Berton R, Bettiol W. Characterization of humic acids extracted from sewage sludge-amended oxisols by electron paramagnetic resonance. Soil Till Res. 2006;91:95–100.

    Article  Google Scholar 

  24. Eichelbaum M, Rademann K, Hoell A, Tatchev DM, Weigel W, Stößer R, Pacchioni G. Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology. 2008;19:135701.

    Article  CAS  PubMed  Google Scholar 

  25. Khutsishvili SS, Tikhonov NI, Lesnichaya MV, Dolmaa G, Vakul’skaya TI, Aleksandrova GP, Sukhov BG. Paramagnetic bioactive silver- and gold-containing nanocomposites based on humic substances. Funct Mater Lett. 2017;10:1650077.

    Article  CAS  Google Scholar 

  26. Moon HR, Kim JH, Suh MP. Redox-active porous-organic framework producing silver nanoparticles from AgI ions at room temperature. Angew Chem Int Ed Engl. 2005;44:1261–5.

    Article  CAS  PubMed  Google Scholar 

  27. Lesnichaya MV, Sukhov BG, Aleksandrova GP, Gasilova ER, Vakul’skaya TI, Khutsishvili SS, Sapozhnikov AN, Klimenkov IV, Trofimov BA. Chiroplasmonic magnetic gold nanocomposites produced by one-step aqueous method using κ-carrageenan. Carbohydr Polym. 2017;175:18–26.

    Article  CAS  PubMed  Google Scholar 

  28. Mercê ALR, Landaluze JS, Mangrich AS, Szpoganicz B, Sierakowski MR. Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+. Biores Technol. 2001;76:29–37.

    Article  Google Scholar 

  29. Tarasova OA, Tatarinova IV, Vakul’skaya TI, Khutsishvili SS, Smirnov VI, Klyba LV, Prozorova GF, Mikhaleva AI, Trofimov BA. Propargyloxy- and allenyloxymethylferrocenes: synthesis and oligomerization. J Organomet Chem. 2013;745–746:1–7.

    Article  CAS  Google Scholar 

  30. Kučerík J, Kovář J, Pekař M. Thermoanalytical investigation of lignite humic acids fractions. J Therm Anal Calorim. 2004;76:55–65.

    Article  Google Scholar 

  31. Ur’yash VF, Larina VN, Kokurina NY, Novoselova NV. The thermochemical characteristics of cellulose and its mixtures with water. Russ J Phys Chem A. 2010;84:915–21.

    Article  CAS  Google Scholar 

  32. Jakab E, Bora Á, Sebestyén Z, Borsa J. Thermal decomposition of chemically treated cellulosic fibres. J Therm Anal Calorim. 2018;132:433–43.

    Article  CAS  Google Scholar 

  33. Provenzano MR, Senesi N. Thermal properties of standard reference humic substances by differential scanning calorimetry. J Therm Anal Calorim. 1999;57:517–26.

    Article  CAS  Google Scholar 

  34. Chukhareva NV, Shishmina LV, Novikov AA. Kinetics of the degradation of peat humic acids. Solid Fuel Chem. 2003;37:30–41.

    Google Scholar 

  35. Martyniuk H, Więkowska J, Lipman J. The study of influence of metal ions on thermal decomposition of humic acids. J Therm Anal Calorim. 2001;65:711–21.

    Article  CAS  Google Scholar 

  36. Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77:233–57.

    Article  CAS  Google Scholar 

  37. Ramezanzadeh B, Attar MM, Farzam M. Effect of ZnO nanoparticles on the thermal and mechanical properties of epoxy-based nanocomposite. J Therm Anal Calorim. 2011;103:731–9.

    Article  CAS  Google Scholar 

  38. Babu VR, Kim C, Kim S, Ahn C, Lee Y. Development of semi-interpenetrating carbohydrate polymeric hydrogels embedded silver nanoparticles and its facile studies on E. coli. Carbohydr Polym. 2010;81:196–202.

    Article  CAS  Google Scholar 

  39. Aleksandrova GP, Lesnichaya MV, Myachin YA, Sukhov BG, Trofimov BA. Effect of silver nanoparticles on the thermal characteristics of nanocomposites of galactose-containing polysaccharides. Dokl Chem. 2011;439:187–9.

    Article  CAS  Google Scholar 

  40. Gendler TS, Novakova AA, Prudnikov VN. Comparative analysis of γ-Fe2O3 nanoparticles magnetic interactions in different polymeric nanocomposites. Solid State Phenom. 2009;152:269–72.

    Article  Google Scholar 

  41. Zakis GF, transl. ed. Joyce T, Brezny R. Functional analysis of lignins and their derivatives. Tappi Pr, New York; 1994.

  42. Lishtvan II, Yanuta YG, Abramets AM, Monich GS, Glukhova NS, Aleinikova VN. Interactions of humic acids with metal ions in the water medium. J Water Chem Technol. 2012;34:211–7.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Baikal Analytical Center for the special measurements. Thermoanalytical studies are performed by Penzik M.V. and Kozlov A.N. in the framework of the scientific project III.17.1.2 of the program of fundamental research of SB RAS, reg. No AAAA-A17-117030310448-0 on the equipment of the “High-temperature circuit” (ESI SB RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak S. Khutsishvili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutsishvili, S.S., Tikhonov, N.I., Pavlov, D.V. et al. Gold- and silver-containing bionanocomposites based on humic substances extracted from coals. J Therm Anal Calorim 137, 1181–1188 (2019). https://doi.org/10.1007/s10973-019-08059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08059-1

Keywords

Navigation