Skip to main content
Log in

The use of thermogravimetry as a means of predicting the performance of coke in delayed coking of a residue of Venezuelan origin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A study, which shows the similarities in the results obtained through this technique and those corresponding to a process of delayed coking at laboratory scale, is presented. Fifteen mixtures with a controlled composition of SARA (saturate, aromatic, resin and asphaltene) fractions which make up the crude were processed both in a delayed coking laboratory unit (DCLU) and in a thermogravimetric analyzer (TG). The comparison of the behavior of the yield of the coke and volatile material obtained through both mediums, DCLU and TG, showed similarities in the mixtures with high aromatic and asphaltene content, but differences in the mixtures with high resin content which would be associated with the formulation of the same, thus indicating the synergy of the fractions within the chemical reaction process taking place, which lead to different reaction pathways depending on the composition of the mixture fed. The similarities in the results obtained through TG and those from DCLU, while not reproducing the exact magnitude of the results, may lead to this technique being a valid reference for the study of changes in the diets used in the process with low resource consumption at both laboratory and industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Karacan O, Versan M. Pyrolisis analysis of crude oils and their fractions. Energy Fuels. 1997;11:385–91.

    Article  CAS  Google Scholar 

  2. Kok MV, Karacan O. Pirolysis analysis and kinetics of crude oils. J Therm Anal. 1998;52:781–8.

    Article  CAS  Google Scholar 

  3. Mothé M, Leite L, Mothé C. Thermal characterization of asphalt mixtures by TG/DTG, DTA and FTIR. J Therm Anal Calorim. 2008;93:105–9.

    Article  CAS  Google Scholar 

  4. Murugan P, Mahunpey N, Mani T, Freitag N. Pyrolysis and combustion kinetics of Fosterton oil using thermogravimetric analysis. Fuel. 2009;88:1708–13.

    Article  CAS  Google Scholar 

  5. Gundogar A, Kok M. Thermal characterization, combustion and kinetics of different origin crude oils. Fuel. 2014;123:59–65.

    Article  CAS  Google Scholar 

  6. Boytsova A, Kodrasheva N, Ancheyta J. Thermogravimetric determination and pyrolysis thermodynamic parameters of heavy oils and asphaltenes. Energy Fuels. 2017;31:10.

    Article  CAS  Google Scholar 

  7. Soares RW, Menezes VJ, Fonseca MVA, Dweck J. Characterization of carbonaceous products by TG and DTA. J Therm Anal. 1997;49:657–61.

    Article  CAS  Google Scholar 

  8. Kok MV. An investigation into the thermal behavior of coals. Energy Sources. 2002;24:899–905.

    Article  CAS  Google Scholar 

  9. De Melo A, Ferreira M, Pickler A, Dweck J. Evaluation of the pyrolysis of biodiesel filtration residue containing diatomite by thermal analysis. J Therm Anal Calorim. 2016;123:1743–50.

    Article  CAS  Google Scholar 

  10. García G, Cadena A, Agámez Y, Díaz J. Comportamiento térmico de carbones de santander y cundinamarca y sus mezclas en la producción de coque metalúrgico. Revista Inventum. 2015;10:49–53.

    Article  Google Scholar 

  11. Gonçalves M, Ribeiro D, Mota D, Teixeira M, Teixeira A. Investigation of petroleum medium fractions and distillation residues from Brazilian crude oils by thermogravimetry. Fuel. 2006;85:1151–5.

    Article  CAS  Google Scholar 

  12. Gonçalves M, Pinto D, Texeira A, Texeira M. Thermogravimetric investigation on prediction of thermal behavior of petroleum distillation residues. J Therm Anal Calorim. 2005;80:81–6.

    Article  CAS  Google Scholar 

  13. Gonçalves MLA, Mota DAP, Cerqueira WV, André D, Saraiva LM, Coelho MIF, Teixeira AMRF, Teixeira MAG. Knowledge of petroleum heavy residue potential as feedstock in refining process using thermogravimetry. Fuel Process Technol. 2010;91:983–7.

    Article  CAS  Google Scholar 

  14. Schucker R. Thermogravimetric determination of the coking kinetics of arab heavy vacuum residuum. Ind Eng Chem. Process Des Dev. 1983;22:615–9.

    Article  CAS  Google Scholar 

  15. Trejo F, Rana M, Ancheyta J. Thermogravimetric determination of coke from asphaltenes, resins and sediments and coking kinetics of heavy crude asphaltenes. Catal Today. 2010;150:272–8.

    Article  CAS  Google Scholar 

  16. Díaz F, Chaves A, Maradei MP, Fuentes D, Guzmán A, Picón H. Kinetic analysis of the thermal decomposition of Colombian vacuum residua by thermogravimetry. Ingeniería e Investigación. 2015;35(3):19–26.

    Article  Google Scholar 

  17. Chen K, Liu H, Guo A, Ge D, Wang Z. Study of the thermal performance and interaction of petroleum residue fractions during the coking process. Energy Fuels. 2012;26:6343–51.

    Article  CAS  Google Scholar 

  18. Guo A, Zhang X, Wang Z. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry. Fuel Process Technol. 2008;89:643–50.

    Article  CAS  Google Scholar 

  19. Speight J. Handbook of petroleum product analysis. 2nd ed. United States: Wiley; 2015.

    Google Scholar 

  20. Noel F. Alternative to the conradson carbon residue test. Fuel. 1984;63:931–4.

    Article  CAS  Google Scholar 

  21. Speight J. The chemistry and technology of petroleum. 5th ed. Boca Ratón: CRC Press; 2014.

    Book  Google Scholar 

  22. Meza A, Ruiz E, Da Fonseca A, Pérez N, Rincón G. Efecto del tipo de alimentación sobre el rendimiento y calidad de los productos de la coquización retardada a partir de residuos de vacío venezolanos. Rev. Latin Am. Metal Mat. 2018;38:64–74.

    Google Scholar 

  23. ASTM International ASTM D4124-09. Standard test method for separation of asphalt into four fractions; 2009.

  24. Nava A. Efecto de la composición SARA del residual Merey en las características de los productos de coquización retardada. Trabajo de Grado: Universidad Simón Bolívar, Sartenejas; 2017.

    Google Scholar 

  25. Fernández C. Biodegradación de la fracción de asfaltenos proveniente de los crudos Hamaca y Guafita. Caracas: Universidad Central de Venezuela; 2012.

    Google Scholar 

  26. López M. Estudio de las Reacciones de Condensación/Polimerización de las fracciones SARA de un residual de Refinación. Trabajo de Grado: Universidad Simón Bolívar, Departamento de Química; 2004.

    Google Scholar 

  27. Meza-Ávila A, Da Fonseca-Rodríguez A, Ruiz-Hernández E, Pérez-Santodomingo N, Rincón-Polo G. Efecto de la distribución de hidrocarburos SARA sobre las propiedades de residuales de vacío. Ingeniería Investigación y Tecnología. 2016;17(4):435–41.

    Google Scholar 

  28. Zerpa A. Efecto del contenido de aromáticos en la alimentación al coquizador retardado sobre las características y rendimiento de los productos. Trabajo de Grado: Universidad Simón Bolívar, Sartenejas; 2016.

    Google Scholar 

  29. Salazar S, Pérez N, Urbina R, Meza A. Evaluación de posibles mejoras en la calidad del coque retardado venezolano por medio del manejo de las condiciones de diseño y operación del tambor de coquización. Rev Latin Am Metal Mat. 2015;35(2):326–33.

    Google Scholar 

  30. Baptista F. Reacciones de condensación-polimerización inducidas por Air-Blowing en las fracciones S.A.R.A. Caracas: Trabajo de Grado, Universidad Simón Bolívar; 2008.

    Google Scholar 

  31. Da Fonseca A, Ruíz E. Evaluación del Efecto del tipo de Alimentación sobre el Rendimiento y la Calidad de los Productos de la Coquización Retardada. Caracas: Trabajo de Grado, Universidad Central de Venezuela; 2014.

    Google Scholar 

  32. ASTM International ASTM E1641. Standard test method for decomposition kinetics by Thermogravimetry; 2004.

  33. ASTM International ASTM D5142. Standard test methods for proximate analysis of the analysis sample of coal and coke by instrumental procedures; 2010.

  34. Pantaleo A, Petruzzella D. Obtención de residuales de vacío de composición controlada y alto contenido de asfaltenos usando solventes recuperados. Miniproyecto de Ingeniería Química. Sartenejas: Universidad Simón Bolívar; 2015.

    Google Scholar 

  35. Da Conceição O, Silva M. Obtención de residuales de vacío de composición controlada y alto contenido de resinas usando solventes recuperados. Miniproyecto de Ingeniería Química. Sartenejas: Universidad Simón Bolívar; 2015.

    Google Scholar 

  36. Álvarez E, Marroquin G, Trejo F, Centeno G, Ancheyta J, Díaz J. Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel. 2011;90:3602–7.

    Article  CAS  Google Scholar 

  37. Meza A. Uso de técnicas de asistencia como vía para mejorar el rendimiento de los productos de interés de la coquización retardada. Caracas: Trabajo Doctoral en Ingeniería, Universidad Simón Bolívar; 2018.

    Google Scholar 

  38. Guo A, Zhang H, Yu D, Wang Z. Coking performance of residue and its four groups by thermogravimetric analysis. Pet Process Chem. 2002;7:5.

    Google Scholar 

  39. Zhang L, Li S, Han L, Sun X, Xu Z, Shi Q, Xu C, Zhao S. Coking reactivity of laboratory-scale unit for two heavy petroleum and their supercritical fluid extraction subfractions. Ind Eng Chem Res. 2013;52:5593–600.

    Article  CAS  Google Scholar 

  40. Requena A, Pérez M, Delgado L. Formación de la Textura del Coque de Petróleo en Coquizadores Retardados. Revista de la Facultad de Ingeniería U.C.V. 2008;23(3):103–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Meza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meza, A., Nava, A., Velázquez, J. et al. The use of thermogravimetry as a means of predicting the performance of coke in delayed coking of a residue of Venezuelan origin. J Therm Anal Calorim 137, 1329–1339 (2019). https://doi.org/10.1007/s10973-019-08055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08055-5

Keywords

Navigation