Skip to main content
Log in

Effect of aluminum phosphinate on the flame-retardant properties of epoxy syntactic foams

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the flame-resistant epoxy syntactic foams with different content of hollow glass microspheres (HGM) were prepared by using aluminum diisobutylphosphinate (AlPBu) as flame retardant. Scanning electron microscope (SEM) images of the fracture surface of different epoxy syntactic foams showed that AlPBu particles had good compatibility with the matrix due to their similar polarities. And the limiting oxygen index, UL 94 test, cone calorimeter and thermogravimetric analysis were applied to characterize the flame retardation and thermal behavior of the foams. These results showed that AlPBu improved the flame retardancy of epoxy syntactic foams, while the HGM exhibit a complicated influence on the flame retardation, although both AlPBu and HGM enhanced the char residues and decreased the peak heat release rate as well as the total heat release of composites. In addition, swollen char layers mainly containing the HGM were generated after adding AlPBu. Then, the char residues of the foams after combustion were observed by SEM, and the results were applied to reveal the different fire behaviors of foams with different densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang L, Zhang J, Yang X, Zhang C, Gong W, Yu J. Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber. Mater Des. 2014;55:928–36.

    Google Scholar 

  2. Hu G, Yu D. Tensile, thermal and dynamic mechanical properties of hollow polymer particle-filled epoxy syntactic foam. Mater Sci Eng A. 2011;528:5177–83.

    Article  CAS  Google Scholar 

  3. Wang L, Yang X, Zhang J, Zhang C, He L. The compressive properties of expandable microspheres/epoxy foams. Composites B. 2014;56:724–32.

    Article  CAS  Google Scholar 

  4. Colloca M, Gupta N, Porfiri M. Tensile properties of carbon nanofiber reinforced multiscale syntactic foams. Composites B. 2013;44:584–91.

    Article  CAS  Google Scholar 

  5. Zhuo JL, Xie LB, Liu GD, Chen XL, Wang YG. The synergistic effect of hollow glass microsphere in intumescent flame-retardant epoxy resin. J Therm Anal Calorim. 2017;129:357–66.

    Article  CAS  Google Scholar 

  6. Gupta N, Maharsia R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications. Appl Compos Mater. 2005;12:247–61.

    Article  CAS  Google Scholar 

  7. Tang Q, Wang B, Shi Y, Song L, Hu Y. Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: application to flame retardant epoxy resin. Ind Eng Chem Res. 2013;52:5640–7.

    Article  CAS  Google Scholar 

  8. Qu H, Wu W, Hao J, Wang C, Xu J. Inorganic–organic hybrid coating encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. Fire Mater. 2014;38:312–22.

    Article  CAS  Google Scholar 

  9. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

  10. Zhang W, Li X, Li L, Yang R. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym Degrad Stab. 2012;97:1041–8.

    Article  CAS  Google Scholar 

  11. Luo H, Zhou F, Yang YY, Cao XL, Cai XF. Synergistic flame-retardant behavior and mechanism of tris(3-nitrophenyl) phosphine and DOPO in epoxy resins. J Therm Anal Calorim. 2018;132:483–91.

    Article  CAS  Google Scholar 

  12. Liu X, Liu J, Cai S. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate filled epoxy flame-retardant composites. Polym Compos. 2012;33:918–26.

    Article  CAS  Google Scholar 

  13. Zhong L, Zhang KX, Wang X, Chen MJ, Xin F, Liu ZG. Synergistic effects and flame-retardant mechanism of aluminum diethyl phosphinate in combination with melamine polyphosphate and aluminum oxide in epoxy resin. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7699-4.

    Article  Google Scholar 

  14. Hu Q, Peng PR, Peng S, Liu JY, Liu XQ, Zou LY, Chen J. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J Therm Anal Calorim. 2017;128:201–10.

    Article  CAS  Google Scholar 

  15. Lv Q, Huang JQ, Chen MJ, Zhao J, Tan Y. An effective flame retardant and smoke suppression oligomer for epoxy resin. Ind Eng Chem Res. 2013;52:9397–404.

    Article  CAS  Google Scholar 

  16. Sun D, Yao Y. Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polym Degrad Stab. 2011;96:1720–4.

    Article  CAS  Google Scholar 

  17. Guo WW, Yu B, Yuan Y, Song L, Hu Y. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites. Compos Part B Eng. 2017;123:154–64.

    Article  CAS  Google Scholar 

  18. Shi YQ, Yu B, Zheng YY, Yang J, Duan ZP, Hu Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J Colloid Interface Sci. 2018;521:160–71.

    Article  CAS  PubMed  Google Scholar 

  19. Xu MJ, Xu GR, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym Degrad Stab. 2016;123:105–14.

    Article  CAS  Google Scholar 

  20. Li JD, Chai SY, Kong L, Chen L, Chang CL. A preparation method of alkyl-substituted phosphinate salt. Patent 103073577 A, CN; 2012.

  21. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D. Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate) (PBT): flame retardancy performance and mechanisms. Polym Degrad Stab. 2011;96:875–84.

    Article  CAS  Google Scholar 

  22. Zhao B, Chen L, Long JW, Jian RK, Wang YZ. Synergistic effect between aluminum hypophosphite and alkyl-substituted phosphinate in flame-retarded polyamide 6. Ind Eng Chem Res. 2013;52:17162–70.

    Article  CAS  Google Scholar 

  23. Samyn F, Bourbigot S. Thermal decomposition of flame retarded formulations PA6/aluminum phosphinate/melamine polyphosphate/organomodified clay: interactions between the constituents? Polym Degrad Stab. 2012;97:2217–30.

    Article  CAS  Google Scholar 

  24. Shi YQ, Yu B, Duan LJ, Gui Z, Wang BB, Hu Y, Yuen Richard KK. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater. 2017;332:87–96.

    Article  CAS  PubMed  Google Scholar 

  25. Shi YQ, Gui Z, Yuan BH, Hu Y, Zheng YY. Flammability of polystyrene/aluminim phosphinate composites containing modified ammonium polyphosphate. J Therm Anal Calorim. 2018;131:1067–77.

    Article  CAS  Google Scholar 

  26. Shi YQ, Fu LB, Chen XL, Guo J, Yang FQ, Wang JG, Zheng YY, Hu Y. Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials. 2017;7:259–71.

    Article  CAS  PubMed Central  Google Scholar 

  27. Zhu YL, Shi YQ, Huang ZQ, Duan LJ, Tai QL, Hu Y. Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos Part A Appl Sci Manuf. 2017;99:149–56.

    Article  CAS  Google Scholar 

  28. Shao X, Wang L, Li M, Jia D. Synthesis, characterization and thermal degradation kinetics of aluminum diisobutylphosphinate. Thermochim Acta. 2012;547:70–5.

    Article  CAS  Google Scholar 

  29. Yao Q, Levchik SV, Alessio GR. Phosphorus-containing flame retardant for thermoplastic polymers. Patent 8003722-B2, USA; 2010.

  30. Lin TC, Gupta N, Talalayev A. Thermoanalytical characterization of epoxy matrix-glass microballoon syntactic foams. J Mater Sci. 2009;44:1520–7.

    Article  CAS  Google Scholar 

  31. Shabde VS, Hoo KA, Gladysz GM. Experimental determination of the thermal conductivity of three-phase syntactic foams. J Mater Sci. 2006;41:4061–73.

    Article  CAS  Google Scholar 

  32. Stefani PM, Cyras V, Tejeira Barchi A, Vazquez A. Mechanical properties and thermal stability of rice husk ash filled epoxy foams. J Appl Polym Sci. 2006;99:2957–65.

    Article  CAS  Google Scholar 

  33. Xia Y, Jin F, Mao Z, Guan Y, Zheng A. Effects of ammonium polyphosphate to pentaerythritol ratio on composition and properties of carbonaceous foam deriving from intumescent flame-retardant polypropylene. Polym Degrad Stab. 2014;107:64–73.

    Article  CAS  Google Scholar 

  34. Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly (methyl methacrylate). Polym Degrad Stab. 2011;96:1780–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation of Guizhou Province ([2018]1088), Science and Technological Project of Guizhou Province GXCX2016-010, Science and Technology Project of Guizhou Province ([2017]2806, [2015]2077) and Guizhou Province High-level Innovative Talents Training Project (2016/5667).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Wang or Jie Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Wang, L., Yang, Z. et al. Effect of aluminum phosphinate on the flame-retardant properties of epoxy syntactic foams. J Therm Anal Calorim 137, 1645–1656 (2019). https://doi.org/10.1007/s10973-019-08051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08051-9

Keywords

Navigation