Skip to main content
Log in

Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low thermal conductivity is a primary issue in the development of efficient heat transfer fluids and materials required for the thermal management of various systems. In this work, beryllium oxide nanoparticles of size 15–25 nm and surface area 88 m2 g−1 were synthesized by polyacrylamide gel route to prepare nanofluid and nano-enhanced phase change material with enhanced thermal properties. The thermal conductivity and viscosity of the nanofluids show a linear increase with the BeO particle concentration, and a maximum thermal conductivity enhancement of 39% was obtained for 2 vol% nanofluid compared to its base fluid (deionized water). Similarly, the thermal conductivity, thermal diffusivity and latent heat capacity of the nano-enhanced phase change material were also found to be increased up to 15%, 30% and 23%, respectively, for 2 vol% BeO nano-enhanced phase change material compared to the base material (polyethylene glycol). The inferred results show that the BeO nanoparticle has a significant influence in the increased thermal properties of nano-enhanced fluids and phase change materials, and thus can be used as a potential heat transfer materials in thermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  2. Shah J, Ranjan M, Davariya V, Gupta SK. Temperature-dependent thermal conductivity and viscosity of synthesized a -alumina nanofluids. Appl Nanosci. 2017;7:803–13.

    Article  CAS  Google Scholar 

  3. Sun B, Liu H. Flow and heat transfer characteristics of nanofluids in a liquid-cooled CPU heat radiator. Appl Therm Eng. 2017;115:435–43.

    Article  CAS  Google Scholar 

  4. Ho CJ, Gao JY. Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int Commun Heat Mass Transf. 2009;36:467–70.

    Article  CAS  Google Scholar 

  5. Choi SUS, Eastman JA. Enhancing the thermal conductivity of fluids with nanoparticles. ASME Int Mech En Congr Explos. 1995;1:1–7.

    Google Scholar 

  6. Mohamadian N, Ghorbani H, Woog D, Hormozi HK. Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study. Adv Geo Energy Res. 2018;2:228–36.

    Article  Google Scholar 

  7. Genc M, Inci B, Genc ZK, Canbay CA. Preparation and investigations of thermal properties of copper oxide, aluminium oxide and graphite based on new organic phase change. Bull Mater Sci. 2015;38:343–50.

    Article  CAS  Google Scholar 

  8. Lenin R, Dadwal A, Joy PA. Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants. Bull Mater Sci Indian Acad Sci. 2018;41:3–8.

    Google Scholar 

  9. Moghaddari M, Yousefi F. Syntheses, characterization, measurement and modeling viscosity of nanofluids containing OH-functionalized MWCNTs and their composites with soft metal (Ag, Au and Pd) in water, ethylene glycol and water/ethylene glycol mixture. J Therm Anal Calorim. 2018;3456789:1–14.

    Google Scholar 

  10. Abbasi S, Zebarjad S, Baghban S, Youssefi A. Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. Bull Mater Sci. 2014;37:1439–45.

    Article  CAS  Google Scholar 

  11. Leena M, Srinivasan S. A comparative study on thermal conductivity of TiO2/ethylene glycol–water and TiO2/propylene glycol–water nanofluids. J Therm Anal Calorim. 2018;131:1987–98.

    Article  CAS  Google Scholar 

  12. Qiu L, Zhu N, Zou H, Feng Y, Zhang X, Tang DW. Advances in thermal transport properties at nanoscale in china. Int J Heat Mass Transf. 2018;125:413–33.

    Article  CAS  Google Scholar 

  13. Qiu L, Zheng ZH, Su GP, Tang DW. Design and application of a free standing sensor based on 3ω technique for thermal conductivity measurement of solids, liquids and nanopowders. Int J Thermophys. 2013;34:2261–75.

    Article  CAS  Google Scholar 

  14. Mehrali M, Sadeghinezhad E, Latibari S, Kazi S, Mehrali M, Zubir MNBM, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9:1–12.

    Article  CAS  Google Scholar 

  15. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Calorim. 2018;4:1–11.

    Google Scholar 

  16. Islam MR, Shabani B, Rosengarten G. Nanofluids to improve the performance of PEM fuel cell cooling systems: a theoretical approach. Appl Energy. 2016;178:660–71.

    Article  CAS  Google Scholar 

  17. Sonage BK, Mohanan P. Miniaturization of automobile radiator by using zinc-water and zinc oxide-water nanofluids. J Mech Sci Technol. 2015;29:2177–85.

    Article  Google Scholar 

  18. Rahimi MH, Jahanfarnia G, Vosoughi N. Thermal–hydraulic analysis of nanofluids as the coolant in supercritical water reactors. J Supercrit Fluids. 2017;128:47–56.

    Article  CAS  Google Scholar 

  19. Kandasamy R, Wang XQ, Mujumdar AS. Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Therm Eng. 2008;28:1047–57.

    Article  CAS  Google Scholar 

  20. Souayfane F, Fardoun F, Biwole PH. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 2016;129:396–431.

    Article  Google Scholar 

  21. Bose P, Amirtham VA. A review on thermal conductivity enhancement of paraffin wax as latent heat energy storage material. Renew Sustain Energy Rev. 2016;65:81–100.

    Article  CAS  Google Scholar 

  22. Wang J, Xie H, Guo Z, Guan L, Li Y. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl Therm Eng. 2014;73:1541–7.

    Article  CAS  Google Scholar 

  23. Hamdan H, Ghaddar N, Ouahrani D, Ghali K, Itani M. PCM cooling vest for improving thermal comfort in hot environment. Int J Therm Sci. 2016;102:154–67.

    Article  Google Scholar 

  24. Ghani S, El Bialy E, Bakochristou F, Gamaledin SMA, Rashwan MM. The effect of forced convection and PCM on helmets thermal performance in hot and arid environments. Appl Therm Eng. 2017;111:624–37.

    Article  Google Scholar 

  25. Colla L, Fedele L, Simone M, Sergio B. Nano PCMs for electronics cooling applications. In: Proceedings of ASME 2016 5th international conference on micro/nanoscale heat mass transfer 2016, vol. 1, p. 1–10.

  26. Sahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells. 2015;137:61–7.

    Article  CAS  Google Scholar 

  27. Shen S, Tan S, Wu S, Guo C, Liang J, Yang Q, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials. Energy Convers Manag. 2018;157:41–8.

    Article  CAS  Google Scholar 

  28. Han P, Zheng XH, Hou WS, Qiu L, Tang DW. Study on the storage and release characteristics of multi-cavity-structured phase change microcapsules. Phase Transit. 2015;88:1–12.

    Article  CAS  Google Scholar 

  29. Tian H, Du L, Wei X, Deng S, Wang W, Ding J. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage. Appl Energy. 2017;204:525–30.

    Article  CAS  Google Scholar 

  30. Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90.

    Article  CAS  Google Scholar 

  31. Kingery WD, Francl J, Coble RL, Vasilos T. Thermal conductivity: X, data for several pure oxide materials corrected to zero porosity. J Am Ceram Soc. 1954;37:107–10.

    Article  CAS  Google Scholar 

  32. Wang X, Wang R, Peng C, Li T, Liu B. Synthesis and sintering of beryllium oxide nanoparticles. Prog Nat Sci Mater Int. 2010;20:81–6.

    Article  Google Scholar 

  33. Kiran V, Krishnan M, Haribabu K, Vishnuprasad S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. Bionanoscience. 2018;8:554–8.

    Article  Google Scholar 

  34. Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows Part I: Fundamental and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  35. Sadeghi R, Etemad SG, Keshavarzi E, Haghshenasfard M. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid Nanofluidics. 2015;18:1023–30.

    Article  CAS  Google Scholar 

  36. Einstein A. Investigations of the theory of the Brownian movement. Dower Publ. 1956;322:549–60.

    Google Scholar 

  37. Ahammed N, Godson L, Somchai A. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123:1399–409.

    Article  CAS  Google Scholar 

  38. Karami M, Akhavan-Behabadi MA, Raisee Dehkordi M, Delfani S. Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol Energy Mater Sol Cells. 2016;144:136–42.

    Article  CAS  Google Scholar 

  39. Zheng H, Wang C, Liu Q, Tian Z, Fan X. Thermal performance of copper foam/paraffin composite phase change material. Energy Convers Manag. 2018;157:372–81.

    Article  CAS  Google Scholar 

  40. Li WW, Cheng WL, Xie B, Liu N, Zhang LS. Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers Manag. 2017;149:1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haribabu Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V., Morri, B., Nair, L.M. et al. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim 137, 1527–1536 (2019). https://doi.org/10.1007/s10973-019-08042-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08042-w

Keywords

Navigation