Skip to main content
Log in

Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Utilization of renewable biomass to prepare phase change material (PCM) that can reversibly store renewable thermal energy is of great interest. Castor oil with functional hydroxyl groups is especially attractive for the preparation of polymeric materials. In this work, a novel castor oil-based polyurethane-acrylate oligomer (COPUA) was firstly synthesized through a two-step condensation reaction. Followed by in situ polymerization of COPUA in the presence of palmitic acid (PA), a novel biomass-based form-stable PCM was prepared, in which renewable PA serves as phase change functional ingredient and castor oil-based crosslinking network acts as encapsulation material. Tailoring the mass ratio of PA and COPUA provides the ultimate encapsulation ratio (70%) of PA in form-stable PCM. The chemical structure, crystalline property, thermal property of form-stable PCM were characterized using Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry and thermogravimetric. Those results demonstrate that the prepared form-stable PCM possesses that good thermal storage capacity with the phase change enthalpy reaches 141.2 J g−1. Accelerated thermal cycling test was also performed to illustrate the thermal reliability of form-stable PCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKone JR, DiSalvo FJ, Abru AHD. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J Mater Chem A. 2017;5:5362–72.

    Article  CAS  Google Scholar 

  2. Börjesson K, Lennartson A, Moth-Poulsen K. Efficiency limit of molecular solar thermal energy collecting devices. ACS Sustain Chem Eng. 2013;1:585–90.

    Article  CAS  Google Scholar 

  3. Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev. 2014;39:748–64.

    Article  Google Scholar 

  4. Alva G, Liu L, Huang X, Fang G. Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev. 2017;68:693–706.

    Article  Google Scholar 

  5. Sundararajan S, Samui AB, Kulkarni PS. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A. 2017;5:18379–96.

    Article  CAS  Google Scholar 

  6. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  7. Wu B, Fu W, Kong B, Hu K, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132:907–17.

    Article  CAS  Google Scholar 

  8. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  9. Akeiber H, Nejat P, Majid MZA, Wahid MA, Jomehzadeh F, Zeynali Famileh I, Calautit JK, Hughes BR, Zaki SA. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev. 2016;60:1470–97.

    Article  Google Scholar 

  10. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81.

    Article  CAS  Google Scholar 

  11. Zhang N, Yuan Y, Wang X, Cao X, Yang X, Hu S. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.

    Article  CAS  Google Scholar 

  12. Qian T, Li J, Min X, Guan W, Deng Y, Ning L. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A. 2015;3:8526–36.

    Article  CAS  Google Scholar 

  13. Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials. Energy Convers Manag. 2008;49:718–23.

    Article  CAS  Google Scholar 

  14. Deng Y, Li J, Qian T, Guan W, Li Y, Yin X. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J. 2016;295:427–35.

    Article  CAS  Google Scholar 

  15. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3:11624–30.

    Article  CAS  Google Scholar 

  16. Tang B, Wang L, Xu Y, Xiu J, Zhang S. Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:1–6.

    Article  CAS  Google Scholar 

  17. Lian Q, Li K, Sayyed AAS, Cheng J, Zhang J. Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior. J Mater Chem A. 2017;5:14562–74.

    Article  CAS  Google Scholar 

  18. Wu B, Jiang Y, Wang Y, Zhou C, Zhang X, Lei J. Study on a PEG/epoxy shape-stabilized phase change material: preparation, thermal properties and thermal storage performance. Int J Heat Mass Transf. 2018;126:1134–42.

    Article  CAS  Google Scholar 

  19. Wu D, Wen W, Chen S, Zhang H. Preparation and properties of a novel form-stable phase change material based on a gelator. J Mater Chem A. 2015;3:2589–600.

    Article  CAS  Google Scholar 

  20. Şentürk SB, Kahraman D, Alkan C, Gökçe İ. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym. 2011;84:141–4.

    Article  CAS  Google Scholar 

  21. Jiang Y, Ding E, Li G. Study on transition characteristics of PEG/CDA solid–solid phase change materials. Polymer. 2002;43:117–22.

    Article  CAS  Google Scholar 

  22. Kumar A, Kulkarni PS, Samui AB. Polyethylene glycol grafted cotton as phase change polymer. Cellulose. 2014;21:685–96.

    Article  CAS  Google Scholar 

  23. Chen C, Wang L, Huang Y. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials. Mater Lett. 2009;63:569–71.

    Article  CAS  Google Scholar 

  24. Xia Y, Larock RC. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 2010;12:1893.

    Article  CAS  Google Scholar 

  25. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, Robin J. The use of renewable feedstock in UV-curable materials: a new age for polymers and green chemistry. Prog Polym Sci. 2013;38:932–62.

    Article  CAS  Google Scholar 

  26. Wang Q, Chen G, Cui Y, Tian J, He M, Yang J. Castor oil based biothiol as a highly stable and self-initiated oligomer for photoinitiator-free UV coatings. ACS Sustain Chem Eng. 2016;5:376–81.

    Article  CAS  Google Scholar 

  27. Ma L, Guo C, Ou R, Sun L, Wang Q, Li L. Preparation and characterization of modified porous wood flour/lauric-myristic acid eutectic mixture as a form-stable phase change material. Energy Fuel. 2018;32:5453–61.

    Article  CAS  Google Scholar 

  28. Black M, Rawlins JW. Thiol–ene UV-curable coatings using vegetable oil macromonomers. Eur Polym J. 2009;45:1433–41.

    Article  CAS  Google Scholar 

  29. Chen G, Guan X, Xu R, Tian J, He M, Shen W, Yang J. Synthesis and characterization of UV-curable castor oil-based polyfunctional polyurethane acrylate via photo-click chemistry and isocyanate polyurethane reaction. Prog Org Coat. 2016;93:11–6.

    Article  CAS  Google Scholar 

  30. Ogunniyi DS. Castor oil: vital industrial raw material. Bioresour Technol. 2006;97:1086–91.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Fu X, Jiang L, Wu B, Wang J, Lei J. Solvent-free synthesis and properties of novel solid–solid phase change materials with biodegradable castor oil for thermal energy storage. Sol Energy Mater Sol C. 2016;147:177–84.

    Article  CAS  Google Scholar 

  32. Kahwaji S, Johnson MB, Kheirabadi AC, Groulx D, White MA. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Sol Energy Mater Sol C. 2017;167:109–20.

    Article  CAS  Google Scholar 

  33. Zeng J, Sun S, Zhou L, Chen Y, Shu L, Yu L, Zhu L, Song L, Cao Z, Sun L. Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells. J Therm Anal Calorim. 2017;129:1583–92.

    Article  CAS  Google Scholar 

  34. Sarı A, Bicer A, Al-Ahmed A, Al-Sulaiman FA, Zahir MH, Mohamed SA. Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage. Sol Energy Mater Sol C. 2018;179:353–61.

    Article  CAS  Google Scholar 

  35. Del Barrio EP, Godin A, Duquesne M, Daranlot J, Jolly J, Alshaer W, Kouadio T, Sommier A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energy Mater Sol C. 2017;159:560–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zhao, Y., Liu, Q. et al. Form-stable phase change materials based on castor oil and palmitic acid for renewable thermal energy storage. J Therm Anal Calorim 137, 1225–1232 (2019). https://doi.org/10.1007/s10973-019-08041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08041-x

Keywords

Navigation