Skip to main content
Log in

Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Melt and cold crystallization characteristics of poly(3-hydroxybutyrate) (PHB) and poly(butylene adipate-co-terephthalate) (PBAT), two biodegradable polyesters of current industrial interest, as well as a PHB/PBAT blend, were investigated by nonisothermal tests of differential scanning calorimetry over a range of cooling/heating rates ranging between 2 and 64 °C min−1. Although more difficult to study the crystallization under isothermal conditions, the quantitative evaluation of nonisothermal crystallization is required to understand and model industrial processes, which are conducted under nonisothermal conditions. While PBAT crystallizes completely during cooling, PHB and the PHB/PBAT blend show incomplete crystallization from the melt, the process being completed during the reheating stage. Notwithstanding the different crystallization behavior, crystallinity levels and melting points of PHB, PBAT and the blend have virtually identical melt crystallization temperatures, due perhaps to differences in the nucleating efficiency of the stereoregular homopolymer PHB and the random copolymer PBAT. These findings may be of enough interest for process engineers designing and controlling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Doi Y. Microbial polyesters. 3ª ed. New York: Wiley-VCH; 1990.

    Google Scholar 

  2. Hocking PJ, Marchessault RH. Biopolymers. In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall/Backie; 1994. p. 1–154.

    Google Scholar 

  3. Hodzic A. Bacterial polyester-based biocomposites: a review. In: Mohanty AK, Misra M, Drzal LT, editors. Natural fibers, biopolymers, and biocomposites. Boca Rato: Taylor & Francis/CRC Press; 2005. p. 597–616.

    Google Scholar 

  4. Di Lorenzo ML, Righetti MC. Evolution of crystal and amorphous fractions of poly[(R)-3-hydroxybutyrate] upon storage. J Therm Anal Calorim. 2012. https://doi.org/10.1007/s10973-012-2734-3.

    Article  Google Scholar 

  5. Yoshie N, Nakasato K, Fujiwara M, Kasuya K, Abe H, Doi Y, Inoue Y. Effect of low molecular weight additives on enzymatic degradation of poly (3-hydroxybutyrate). Polymer. 2000. https://doi.org/10.1016/s0032-3861(99)00547-9.

    Article  Google Scholar 

  6. Gunaratne LMWK, Shanks RA. Melting and thermal history of poly (hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta. 2000. https://doi.org/10.1016/j.tca.2005.01.060.

    Article  Google Scholar 

  7. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S. Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test. 2002. https://doi.org/10.1016/s0142-9418(01)00142-8.

    Article  Google Scholar 

  8. Sridewi N, Bhubalan K, Sudesh K. Degradation of commercially important polyhydroxyalkanoates in tropical mangrove ecosystem. Polym Degrad Stab. 2006. https://doi.org/10.1016/j.polymdegradstab.2006.08.027.

    Article  Google Scholar 

  9. Yamamoto M, Witt U, Skupin G, Beimborn D, Müller RJ. Products. Biopolymers. Polyesters. Applications and Commercial. In: Steinbüchel YDA, editor. Biodegradable aliphatic-aromatic polyesters. Ecoflex. New York: Wiley; 2002. p. 299 ss.

    Google Scholar 

  10. Parra DF, Rosa DS, Rezende J, Ponce P, Lugão AB. Biodegradation of γ-irradiated poly 3-hydroxybutyrate (PHB) films blended with poly (ethyleneglycol). J Polym Environ. 2011. https://doi.org/10.1007/s10924-011-0353-x.

    Article  Google Scholar 

  11. Al-Itry R, Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab. 2012. https://doi.org/10.1016/j.polymdegradstab.2012.06.028.

    Article  Google Scholar 

  12. Fukushima K, Wu MH, Bocchini S, Rasyida A, Yang MC. PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C. 2012. https://doi.org/10.1016/j.msec.2012.04.005.

    Article  Google Scholar 

  13. Groeninckx G, Harrats C, Vanneste M, Everaert V. Polymer blends handbook. In: Utacki LA, Wilkie CA, editors. Crystallization, micro- and nano-structure, and melting behavior of polymer blends. New York: Springer; 2014. p. 291–446.

    Google Scholar 

  14. Silva IDS, Jaques NG, Barbosa Neto MC, Agrawal P, Ries A, Wellen RMR, Canedo EL. Melting and crystallization of PHB/ZnO compounds. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6749-7.

    Article  Google Scholar 

  15. Cipriano PB. Preparation and characterization of PHB/mesocarp of babassu compounds. MSc Thesis, UFCG, Brazil, 2012.

  16. Wellen RMR, Canedo EL, Rabello MS. Melting and crystallization of PHB/carbon black compounds: effect of heating and cooling cycles on phase transition. J Mater Res. 2015. https://doi.org/10.1557/jmr.2015.287.

    Article  Google Scholar 

  17. Vitorino MBC, Cipriano PB, Wellen RMR, Canedo EL, Carvalho LH. Nonisothermal melt crystallization of PHB/babassu compounds. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5514-7.

    Article  Google Scholar 

  18. Costa ARM, Ito EN, Carvalho LH, Canedo EL. Non-isothermal melt crystallization kinetics of poly(3-hydroxybutyrate), poly(butylene adipate-co-terephthalate) and its mixture. Polímeros 2018.

  19. Barham PJ, Keller A, Otun EL, Holmes PA. Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci. 1984. https://doi.org/10.1007/bf01026954.

    Article  Google Scholar 

  20. Avella M, Martuscelli E, Orsello G, Raimo M, Pascucci B. Poly(3-hydroxybutyrate)/poly(methyleneoxide) blends: thermal, crystallization and mechanical behaviour. Polymer. 1997. https://doi.org/10.1016/s0032-3861(97)00166-3.

    Article  Google Scholar 

  21. Gan ZH, Kuwabara K, Yamamoto M, Abe H, Doi Y. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters. Polym Degrad Stab. 2004. https://doi.org/10.1016/s0141-3910(03)00274-x.

    Article  Google Scholar 

  22. Wellen RMR, Rabello MS, Fechine GJM, Canedo EL. Melting and crystallization of poly (3-hydroxybutyrate). Effect of heating/cooling rates on phase transformation. Polímeros. 2015. https://doi.org/10.1590/0104-1428.1961.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank PHB Industrial (Serrana SP, Brazil) for supplying PHB free of charge and the Conselho Nacional de de Pesquisa (CNPq) e Coordenação de Aperfeiçoamento de Pessoal Superior (CAPES), Brazil for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Raffaela de Matos Costa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Matos Costa, A.R., Santos, R.M., Ito, E.N. et al. Melt and cold crystallization in a poly(3-hydroxybutyrate) poly(butylene adipate-co-terephthalate) blend. J Therm Anal Calorim 137, 1341–1346 (2019). https://doi.org/10.1007/s10973-019-08027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08027-9

Keywords

Navigation