Advertisement

Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid

  • S. A. M. Mehryan
  • E. Izadpanahi
  • M. GhalambazEmail author
  • A. J. Chamkha
Article

Abstract

The aim of this paper is to examine the effects of Cu–Al2O3/water hybrid nanofluid and Al2O3/water nanofluid on the mixed convection inside a square cavity caused by a hot oscillating cylinder. The governing equations are first transformed into dimensionless form and then discretized over a non-uniform unstructured moving grid with triangular elements. The effects of several parameters, such as the nanoparticle volume fraction, the Rayleigh number, the amplitude of the oscillation, and the period of the oscillation of the cylinder are investigated numerically. The results indicate that the motion of the oscillating cylinder toward the top and bottom walls increases the average Nusselt number when the Rayleigh number is low. Furthermore, the presence of Al2O3 and Cu–Al2O3 nanoparticles leads to an increase in the values of the average Nusselt number Nuavg for cases of low values of the Rayleigh number. It is found that the natural convection heat transfer rate of a simple Al2O3/water nanofluid is better than that of Cu–Al2O3/water hybrid nanofluid.

Keywords

Hybrid nanofluid Oscillatory cylinder Nanofluid Nanoparticles Mixed convection 

List of symbols

A

Amplitude of oscillation

Cp

Specific heat at constant pressure

D

Diameter of the cylinder

f

Dimensionless frequency (f = ωL2/αf)

g

Gravity acceleration

k

Thermal conductivity

L

Length of the cavity

Nu

Nusselt number

P

Pressure

Pr

Prandtl number (Pr = ν/α)

R

Radius of the cylinder

Ra

Rayleigh number (Ra = (TH* − TC*)L3/να)

T

Temperature

TP

Period of oscillation (TP = 1/f)

t

Dimensional time

x, y

Cartesian coordinates

u

Velocity component along x-axis

v

Velocity component along y-axis

w

Velocity of the moving grid

W0

The length of the cylindrical heater

Greek symbols

α

Thermal diffusivity

β

Thermal expansion coefficient

μ

Dynamic viscosity

ν

Kinematic viscosity

ρ

Density

τ

Dimensionless time (τ = f/L2)

φ

Volume fraction

ω

Dimensional frequency

Superscripts

*

Dimensional parameters

Subscripts

avg

Average

C

Cold

H

Hot

f

Base fluid

nf

Nanofluid

hnf

Hybrid nanofluid

hnp

Hybrid nanoparticles

Notes

References

  1. 1.
    Cesini G, Paroncini M, Cortella G, Manzan M. Natural convection from a horizontal cylinder in a rectangular cavity. Int J Heat Mass Transf. 1999;42(10):1801–11.CrossRefGoogle Scholar
  2. 2.
    Yoon HS, Ha MY, Kim BS, Yu DH. Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 10 7. Phys Fluids. 2009;21(4):047101.CrossRefGoogle Scholar
  3. 3.
    Kim B, Lee D, Ha M, Yoon H. A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int J Heat Mass Transf. 2008;51(7–8):1888–906.CrossRefGoogle Scholar
  4. 4.
    Park Y, Ha M, Yoon H. Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations. Int J Heat Mass Transf. 2013;65:696–712.CrossRefGoogle Scholar
  5. 5.
    Kang DH, Ha MY, Yoon HS, Choi C. Bifurcation to unsteady natural convection in square enclosure with a circular cylinder at Rayleigh number of 107. Int J Heat Mass Transf. 2013;64:926–44.CrossRefGoogle Scholar
  6. 6.
    Doo JH, Mun GS, Ha MY, Seong SY. Thermo-dynamic irreversibility induced by natural convection in square enclosure with inner cylinder. Part-II: effect of vertical position of inner cylinder. Int J Heat Mass Transf. 2016;97:1120–39.CrossRefGoogle Scholar
  7. 7.
    Huang Z, Zhang W, Xi G. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature. Int J Heat Mass Transf. 2015;82:16–25.CrossRefGoogle Scholar
  8. 8.
    Zhang P, Zhang X, Deng J, Song L. A numerical study of natural convection in an inclined square enclosure with an elliptic cylinder using variational multiscale element free Galerkin method. Int J Heat Mass Transf. 2016;99:721–37.CrossRefGoogle Scholar
  9. 9.
    Chamkha AJ, Hussain SH, Abd-Amer QR. Mixed convection heat transfer of air inside a square vented cavity with a heated horizontal square cylinder. Numer Heat Transf A Appl. 2011;59(1):58–79.CrossRefGoogle Scholar
  10. 10.
    Hussein AK. Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations. Int Commun Heat Mass Transf. 2013;46:126–33.CrossRefGoogle Scholar
  11. 11.
    Butler C, Newport D, Geron M. Natural convection experiments on a heated horizontal cylinder in a differentially heated square cavity. Exp Therm Fluid Sci. 2013;44:199–208.CrossRefGoogle Scholar
  12. 12.
    Chamkha AJ, Selimefendigil F, Ismael MA. Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer Heat Transf A Appl. 2016;69(6):659–75.CrossRefGoogle Scholar
  13. 13.
    Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.Google Scholar
  14. 14.
    Kahveci K. Buoyancy driven heat transfer of nanofluids in a tilted enclosure. J Heat Transf. 2010;132(6):062501.CrossRefGoogle Scholar
  15. 15.
    Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304–21.CrossRefGoogle Scholar
  16. 16.
    Ganji D, Malvandi A. Natural convection of nanofluids inside a vertical enclosure in the presence of a uniform magnetic field. Powder Technol. 2014;263:50–7.CrossRefGoogle Scholar
  17. 17.
    Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface. Adv Powder Technol. 2015;26(2):542–52.CrossRefGoogle Scholar
  18. 18.
    Sheikholeslami M, Rashidi M, Hayat T, Ganji D. Free convection of magnetic nanofluid considering MFD viscosity effect. J Mol Liq. 2016;218:393–9.CrossRefGoogle Scholar
  19. 19.
    Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42(31):19611–21.CrossRefGoogle Scholar
  20. 20.
    Sheikholeslami M. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. Eur Phys J Plus. 2016;131(11):413.CrossRefGoogle Scholar
  21. 21.
    Malvandi A. Anisotropic behavior of magnetic nanofluids (MNFs) at film boiling over a vertical cylinder in the presence of a uniform variable-directional magnetic field. Powder Technol. 2016;294:307–14.CrossRefGoogle Scholar
  22. 22.
    Makulati N, Kasaeipoor A, Rashidi M. Numerical study of natural convection of a water–alumina nanofluid in inclined C-shaped enclosures under the effect of magnetic field. Adv Powder Technol. 2016;27(2):661–72.CrossRefGoogle Scholar
  23. 23.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamental and theory. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.004.Google Scholar
  24. 24.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2018.  https://doi.org/10.1016/j.physrep.2018.11.003.Google Scholar
  25. 25.
    Malvandi A, Ganji D. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technol. 2014;263:37–44.CrossRefGoogle Scholar
  26. 26.
    Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.CrossRefGoogle Scholar
  27. 27.
    Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.CrossRefGoogle Scholar
  28. 28.
    Sheikholeslami M. CuO-water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017;132(1):55.CrossRefGoogle Scholar
  29. 29.
    Abu-Nada E, Chamkha AJ. Mixed convection flow of a nanofluid in a lid-driven cavity with a wavy wall. Int Commun Heat Mass Transf. 2014;57:36–47.CrossRefGoogle Scholar
  30. 30.
    Sheremet MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–45.CrossRefGoogle Scholar
  31. 31.
    Sheremet MA, Grosan T, Pop I. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp Porous Media. 2015;106(3):595–610.CrossRefGoogle Scholar
  32. 32.
    Garoosi F, Bagheri G, Rashidi MM. Two phase simulation of natural convection and mixed convection of the nanofluid in a square cavity. Powder Technol. 2015;275:239–56.CrossRefGoogle Scholar
  33. 33.
    Mansour M, Chamkha A, Bakier M. Magnetohydrodynamic natural convection and entropy generation of a Cu–water nanofluid in a cavity with wall mounted heat source/sink. J Nanofluids. 2015;4(2):254–69.CrossRefGoogle Scholar
  34. 34.
    Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int J Heat Mass Transf. 2016;99:872–81.CrossRefGoogle Scholar
  35. 35.
    Sheremet MA, Oztop H, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.CrossRefGoogle Scholar
  36. 36.
    Rashad A, Chamkha AJ, Ismael MA, Salah T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu–Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J Heat Transf. 2018;140(7):072502.CrossRefGoogle Scholar
  37. 37.
    Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7377-6.Google Scholar
  38. 38.
    Ismael MA, Ghalib HS. Double diffusive natural convection in a partially layered cavity with inner solid conductive body. Sci Iran. 2018;25(5):2643–59.Google Scholar
  39. 39.
    Alsabery AI, Hashim I, Chamkha AJ, Saleh H, Chanane B. Effect of spatial side-wall temperature variation on transient natural convection of a nanofluid in a trapezoidal cavity. Int J Numer Methods Heat Fluid Flow. 2017;27(6):1365–84.CrossRefGoogle Scholar
  40. 40.
    Alsabery AI, Tayebi T, Chamkha AJ, Hashim I. Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below. Int Commun Heat Mass Transf. 2018;95:197–209.CrossRefGoogle Scholar
  41. 41.
    Alsabery A, Ismael M, Chamkha A, Hashim I. Numerical investigation of mixed convection and entropy generation in a wavy-walled cavity filled with nanofluid and involving a rotating cylinder. Entropy. 2018;20(9):664.CrossRefGoogle Scholar
  42. 42.
    Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Conjugate heat transfer of Al2O3–water nanofluid in a square cavity heated by a triangular thick wall using Buongiorno’s two-phase model. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7473-7.Google Scholar
  43. 43.
    Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7380-y.Google Scholar
  44. 44.
    Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. J Numer Heat Transf A Appl. 2018;73(4):254–76.CrossRefGoogle Scholar
  45. 45.
    Jena P, Brocchi E, Motta M. In-situ formation of Cu–Al2O3 nano-scale composites by chemical routes and studies on their microstructures. Mater Sci Eng A. 2001;313(1–2):180–6.CrossRefGoogle Scholar
  46. 46.
    Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388(1–3):41–8.CrossRefGoogle Scholar
  47. 47.
    Chamkha A, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.CrossRefGoogle Scholar
  48. 48.
    Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.CrossRefGoogle Scholar
  49. 49.
    Ghalambaz M, Doostani A, Izadpanahi E, Chamkha AJ. Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives. J Taiwan Inst Chem Eng. 2017;72:104–15.CrossRefGoogle Scholar
  50. 50.
    Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.CrossRefGoogle Scholar
  51. 51.
    Ismael MA, Armaghani T, Chamkha AJ. Mixed convection and entropy generation in a lid-driven cavity filled with a hybrid nanofluid and heated by a triangular solid. Heat Transf Res. 2018;49(17):1645–65.CrossRefGoogle Scholar
  52. 52.
    Esfe MH, Arani AAA, Rezaie M, Yan W-M, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.CrossRefGoogle Scholar
  53. 53.
    Moghadassi A, Ghomi E, Parvizian F. A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci. 2015;92:50–7.CrossRefGoogle Scholar
  54. 54.
    Mehryan S, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28(9):2295–305.CrossRefGoogle Scholar
  55. 55.
    Kefayati GR. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using Lattice Boltzmann method. Int Commun Heat Mass Transf. 2013;40:67–77.CrossRefGoogle Scholar
  56. 56.
    Elshehabey HM, Hady F, Ahmed SE, Mohamed R. Numerical investigation for natural convection of a nanofluid in an inclined L-shaped cavity in the presence of an inclined magnetic field. Int Commun Heat Mass Transf. 2014;57:228–38.CrossRefGoogle Scholar
  57. 57.
    Nasrin R, Alim M. Free convective flow of nanofluid having two nanoparticles inside a complicated cavity. Int J Heat Mass Transf. 2013;63:191–8.CrossRefGoogle Scholar
  58. 58.
    Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.Google Scholar
  59. 59.
    Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.CrossRefGoogle Scholar
  60. 60.
    Einstein A. Investigations on the theory of the Brownian movement. North Chelmsford: Courier Corporation; 1956.Google Scholar
  61. 61.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.CrossRefGoogle Scholar
  62. 62.
    Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.CrossRefGoogle Scholar
  63. 63.
    Strang G, Fix GJ. An analysis of the finite element method. Englewood Cliffs: Prentice-Hall; 1973.Google Scholar
  64. 64.
    Souli MH, Benson DJ. Arbitrary Lagrangian Eulerian and fluid-structure interaction: numerical simulation. New York: Wiley; 2013.CrossRefGoogle Scholar
  65. 65.
    Codina R, Houzeaux G, Coppola-Owen H, Baiges J. The fixed-mesh ALE approach for the numerical approximation of flows in moving domains. J Comput Phys. 2009;228(5):1591–611.CrossRefGoogle Scholar
  66. 66.
    Sun F. Investigations of smoothed particle hydrodynamics method for fluid-rigid body interactions. Southampton: University of Southampton; 2013.Google Scholar
  67. 67.
    Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw TOMS. 2005;31(3):363–96.CrossRefGoogle Scholar
  68. 68.
    Xu F, Patterson JC, Lei C. Heat transfer through coupled thermal boundary layers induced by a suddenly generated temperature difference. Int J Heat Mass Transf. 2009;52(21–22):4966–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Yasooj BranchIslamic Azad UniversityYasoojIran
  2. 2.Department of Mechanical and Materials EngineeringFlorida International UniversityMiamiUSA
  3. 3.Department of Mechanical Engineering, Dezful BranchIslamic Azad UniversityDezfulIran
  4. 4.Mechanical Engineering Department, Prince Mohammad Endowment for Nanoscience and TechnologyPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  5. 5.RAK Research and Innovation CenterAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations