Skip to main content
Log in

Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Although many studies have addressed the urge of exploring the porous media partially embedded in a channel due to its wide engineering applications, the heat transfer and fluid flow of a channel consisting of multilayered metal foam are relatively untouched. To tackle this research gap, a numerical study is conducted to analyze a channel partially filled with a three-layered porous medium—occupying sixty percent of a heat sink—over the Reynolds numbers ranging from 50 to 150 and water base fluid. To this aim, two configuration models of porous media are evaluated here: metal foam with (A) similar particle diameters (2 mm) and different porosities (0.75, 0.85, 0.95) and (B) similar porosities (0.88) and different particle diameters (1, 2, 3 mm). Darcy–Brinkman–Forchheimer and local thermal non-equilibrium methods are used to solve the momentum and energy equations in the porous region, respectively. The validity assessment of the local thermal equilibrium method elucidates that its accuracy is questionable at higher porosities and particle diameters of the metal foam—highlighting the necessity of incorporating the LTNE method under the mentioned circumstances. Among the considered geometries, the optimal arrangements of metal foam at both models are selected according to the performance evaluation criteria value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area (m2)

a sf :

Fluid to solid specific area

C :

Specific heat capacity (J kg−1 K−1)

d p :

Particle diameter (m)

Da :

Darcy number

f :

Friction coefficient

f p :

Friction coefficient of plain channel

h :

Heat transfer coefficient (W m−2 K−1)

h c :

Channel height (m)

h p :

Porous thickness (m)

h sf :

Fluid to solid heat transfer coefficient

K :

Permeability (m2)

k :

Thermal conductivity (W m−1 K−1)

k eff :

Effective thermal conductivity (W m−1 K−1)

k ef :

Effective thermal conductivity of porous region solid phase (W m−1 K−1)

k es :

Effective thermal conductivity of porous region fluid phase (W m−1 K−1)

k er :

Ratio of effective solid thermal conductivity to that of fluid

l:

Length of the channel (m)

Nu :

Nusselt number

Nu p :

Nusselt number of plain channel

Nu x :

Local Nusselt number

Nu avg :

Average Nusselt number

PEC:

Performance evaluation criteria

p :

Pressure (Pa)

Pr :

Prandtl number

q″:

Heat flux (w m−2)

Re :

Reynolds number

T :

Temperature (K)

u :

x-direction velocity (m s−1)

v :

y-direction velocity (m s−1)

θ :

Dimensionless temperature

ϑ :

Cinematic viscosity (m2 s−1)

μ :

Dynamic viscosity (kg ms−1)

ρ :

Density (kg m−3)

ε :

Porosity

ϕ :

Volume fractions of nanoparticles

eff:

Effective

f:

Fluid

i:

Inlet

o:

Outlet

s:

Solid

sp:

Solid phase of porous region

w:

Wall

References

  1. Ghazvini M, Shokouhmand H. Investigation of a nanofluid-cooled microchannel heat sink using fin and porous media approaches. Energy Convers Manag. 2009;50:2373–80.

    Article  CAS  Google Scholar 

  2. Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–843.

    Article  CAS  Google Scholar 

  3. Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Phys. E. 2017;93:179–189.

    Article  CAS  Google Scholar 

  4. Najafi Amel A, Kouravand S, Zarafshan P, Kermani AM, Khashehchi M. Study the heat recovery performance of micro and nano metfoam regenerators in alpha type stirling engine conditions. Nanoscale Microscale Thermophys Eng. 2018;22:137–51.

    Article  CAS  Google Scholar 

  5. Tana WC, Sawa LH, Thiama HS, Xuanb J, Caic Z, Yewa MCh. Overview of porous media/metal foam application in fuel cells and solar power systems. Renew Sustain Energy Rev. 2018;96:181–97.

    Article  Google Scholar 

  6. Saedodina S, Zamzamianb SAH, Eshah Nimvaric M, Wongwisesd S, Javaniyan Jouybaria H. Performance evaluation of a flat-plate solar collector filled with porous metal foam: experimental and numerical analysis. Energy Convers Manag. 2017;153:278–87.

    Article  Google Scholar 

  7. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  8. Bamorovat Abadi Gh, Kim KCh. Experimental heat transfer and pressure drop in a metal-foam-filled tube heat exchanger. Exp Therm Fluid Sci. 2017;82:42–9.

    Article  CAS  Google Scholar 

  9. Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci and Eng Prog. 2017;2:140–150.

    Article  Google Scholar 

  10. Lu W, Zhang T, Yang M, Wub Y. Analytical solutions of force convective heat transfer in plate heat exchangers partially filled with metal foams. Int J Heat Mass Transf. 2017;110:476–81.

    Article  Google Scholar 

  11. Shen B, Yan H, Sunden B, Xue H, Xie G. Forced convection and heat transfer of water-cooled microchannel heat sinks with various structured metal foams. Int J Heat Mass Transf. 2017;113:1043–53.

    Article  CAS  Google Scholar 

  12. Khashan SA, Al-Amiri AM, Al-Nimr MA. Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes. Appl Therm Eng. 2005;25:1429–45.

    Article  CAS  Google Scholar 

  13. Zhang X, Liu W. New criterion for local thermal equilibrium in porous media. J Thermophys Heat Transf. 2008;4:649–53.

    Article  CAS  Google Scholar 

  14. Al-Sumaily GF, Sheridan J, Thompson MC. Validation of thermal equilibrium assumption in forced convection steady and pulsatile flows over a cylinder embedded in a porous channel. Int Commun Heat Mass Transf. 2013;43:30–8.

    Article  Google Scholar 

  15. Dehghan M, Tajik Jamal-Abad M, Rashidi S. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers. Energy Convers Manag. 2014;85:264–71.

    Article  Google Scholar 

  16. Xu HJ, Qu ZG, Tao WQ. Numerical investigation on self-coupling heat transfer in a counterflow double-pipe heat exchanger filled with metallic foams. Appl Therm Eng. 2014;66:43–54.

    Article  Google Scholar 

  17. Xu HJ, Gong L, Zhao CY, Yang YH, Xu ZG. Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams. Int J Therm Sci. 2015;95:73–87.

    Article  Google Scholar 

  18. Lin W, Xie G, Yuan J, Sundén B. Comparison and analysis of heat transfer in aluminum foam using local thermal equilibrium or nonequilibrium model. Heat Transf Eng. 2015;37:314–22.

    Article  CAS  Google Scholar 

  19. Shokouhmand H, Jam F, Salimpour MR. Optimal porosity in an air heater conduit filled with a porous matrix. Heat Transf Eng. 2009;30:375–82.

    Article  CAS  Google Scholar 

  20. Xu HJ, Qu ZG, Tao WQ. Analytical solution of forced convective heat transfer in tubes partially filled with metallic foam using the two-equation model. Int J Heat Mass Transf. 2011;54:3846–55.

    Article  CAS  Google Scholar 

  21. Hung TC, Huang YX, Yan WM. Thermal performance of porous microchannel heat sink: effects of enlarging channel outlet. Int Commun Heat Mass Transf. 2013;48:86–92.

    Article  Google Scholar 

  22. Mahmoudi Y, Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int J Heat Mass Transf. 2014;68:161–73.

    Article  Google Scholar 

  23. Dathathri S, Balaji C. Heat transfer and optimization studies on layered porous stackings under an imposed pressure drop. Int Commun Heat Mass Transf. 2015;60:32–6.

    Article  Google Scholar 

  24. Chuan L, Wang XD, Wang TH, Yan WM. Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. Int Commun Heat Mass Transf. 2015;65:52–7.

    Article  Google Scholar 

  25. Wang ShL, Li XY, Wang XD, Lu G. Flow and heat transfer characteristics in double-layered microchannel heat sinks with porous fins. Int Commun Heat Mass Transf. 2018;93:41–7.

    Article  Google Scholar 

  26. Shenoy M, Sheremet I. Pop, Convective Flow and Heat Transfer from wavy Surfaces: viscous Fluids, Porous Media and Nanofluids. New York: CRC Press, Taylor & Francis Group; 2016.

    Book  Google Scholar 

  27. Kasaeian A, Azarian RD, Mahian O, Lioua K, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    Article  CAS  Google Scholar 

  28. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, kleinstreuer C, Marshal JS, Siavashi M, Taylor RA, Niazmand H, Wangwises S, Hayat T, Kolanjiyil A, Kasaeian A, and Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  29. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, kleinstreuer C, Marshal JS, Taylor RA, Abu-Nada A, Rashidi S, Niazmand H, Wangwises S, Hayat T, Kolanjiyil A, Kasaeian A, and Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  Google Scholar 

  30. Khanfar Kh, Vafai K. Applications of nanofluid in porous medium. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7565-4.

    Article  Google Scholar 

  31. Vafai K. Handbook of porous media. 3rd ed. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  32. Merrikh AA, Mohamad AA. Non-Darcy effects in buoyancy driven flows in an enclosure filled with vertically layered porous media. Int J Heat Mass Transf. 2002;45:4305–13.

    Article  Google Scholar 

  33. Prommas R. Theoretical and experimental study of heat and mass transfer mechanism during convective drying of multi-layered porous packed bed. Int Commun Heat Mass Transf. 2011;38:900–5.

    Article  Google Scholar 

  34. Tyvand PA, Storesletten L. onset of convection in an anisotropic porous layer with vertical principal axes. Transp Porous Media. 2015;108:581–93.

    Article  Google Scholar 

  35. Siavashi M, Talesh Bahrami HR, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using gradient and multi-layered porous foams. Appl Therm Eng. 2018;138:465–74.

    Article  CAS  Google Scholar 

  36. Nield DA, Bejan A. Convection in porous media. 4th ed. New York: Springer; 2013.

    Book  Google Scholar 

  37. Alazmi B, Vafai K. Analysis of variants within the porous media transport models. ASME J Heat Transf. 1999;122:303–26.

    Article  Google Scholar 

  38. Yarmand H, Gharehkhani S, Seyed Shirazi SF, Goodarzi M, Amiri A, Sarsama WS, Alehashem MS, Dahari M, Kazi SN. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.

    Article  CAS  Google Scholar 

  39. Khodabandeh E, Bahiraei M, Mashayekhi R, Talebjedi B, Toghraie D. Thermal performance of Ag–water nanofluid in tube equipped with novel conical strip inserts using two-phase method: geometry effects and particle migration considerations. Powder Technol. 2018;338:87–100.

    Article  CAS  Google Scholar 

  40. Dabiri S, Khodabandeh E, Khoeini Poorfar A, Mashayekhi R, Toghraie D, Abadian Zade SA. Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy. 2018;153:17–26.

    Article  Google Scholar 

  41. Heydari A, Akbari OA, Safaei MR, Derakhshani M, AAA Alrashed A, Mashayekhi R, Ahmadi Sheikh Shabani Gh, Zarringhalam M, Nguyen TKh. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131:2893–912.

    Article  CAS  Google Scholar 

  42. Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl Therm Eng. 2018;133:137–59.

    Article  CAS  Google Scholar 

  43. Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134:2305–15.

    Article  CAS  Google Scholar 

  44. Kim D, Kwon Y, Cho Y, Li Ch, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. J Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasteh, H., Mashayekhi, R., Toghraie, D. et al. Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. J Therm Anal Calorim 137, 1045–1058 (2019). https://doi.org/10.1007/s10973-019-08007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08007-z

Keywords

Navigation