Skip to main content
Log in

Thermokinetic behavior and microcharacterization of low-rank bitumiteoxidization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As to the continuous consumption of limited high-rank coal resources, low-rank bituminous coal is gradually grabbing more attention to the utilization for power resources and industrial production. However, the high risk of spontaneous combustion of low-rank coal has gradually become one of the most critical hazards worldwide during coal mining, storage, and applications. Thermogravimetry coupled with Fourier transform infrared spectrometry using a nonisothermal program method was employed to investigate the oxidized features of two low-rank coals from Jurassic strata. According to initial, first- and second-derivative thermogravimetric curves, an improved quantitative method for determining the eight characteristic temperatures of the coal oxidation process was proposed. The indexes and implications for the thermal hazard of spontaneous coal combustion during stages I–IV, based on the characteristic temperatures, were analyzed. By examining the functional groups, microcharacterization at each characteristic temperature of the coal was obtained. Three kinetic methods were used to calculate the apparent activation energy (\(E_{\text{a}}\)). The evolution of \(E_{\text{a}}\) was stage III > stage IV > stage II > stage I. The results demonstrated that the integral mechanism in the four stages described a second-order chemical reaction. Moreover, the pre-exponential factor and \(E_{\text{a}}\) were positively correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang N, Wen ZG, Liu MQ, Guo J. Constructing an energy efficiency benchmarking system for coal production. Appl Energy. 2016;169:301–8.

    Article  Google Scholar 

  2. Hao H, Liu ZQ, Zhao FQ, Du JY, Chen YS. Coal-derived alternative fuels for vehicle use in China: a review. J Clean Prod. 2017;141:774–90.

    Article  CAS  Google Scholar 

  3. Pei P, Wang QC, Wu DH. Application and research on regenerative high temperature air combustion technology on low-rank coal pyrolysis. Appl Energy. 2015;156:762–6.

    Article  CAS  Google Scholar 

  4. Wen BF, Xia WC, Sokolovic JM. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technol. 2017;319:1–11.

    Article  CAS  Google Scholar 

  5. Park JH, Lee YJ, Jin MH, Park SJ, Lee DW, Bae JS, Kim JG, Song KH, Choi YC. Enhancement of slurryability and heating value of coal water slurry (CWS) by torrefaction treatment of low rank coal (LRC). Fuel. 2017;203:607–17.

    Article  CAS  Google Scholar 

  6. Song ZY, Kuenzer C. Coal fires in China over the last decade: a comprehensive review. Int J Coal Geol. 2014;133:72–99.

    Article  CAS  Google Scholar 

  7. Kuang M, Li ZQ. Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers. Energy. 2014;69:144–78.

    Article  CAS  Google Scholar 

  8. Djalal T, Amir A, Bachir S. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128:335–48.

    Article  CAS  Google Scholar 

  9. Trache Djalal. Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohydr Polym. 2016;151:535–7.

    Article  CAS  PubMed  Google Scholar 

  10. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  11. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:136–44.

    Article  CAS  PubMed  Google Scholar 

  12. Santhosh G, Soumyamol P, Sreejith M, Reshmi S. Isoconversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.

    Article  CAS  Google Scholar 

  13. He Y, Liao S, Chen Z, Li Y, Xia Y, Wu W, et al. Nonisothermal kinetics study with advanced isoconversional procedure and DAEM. J Therm Anal Calorim. 2014;115:237–45.

    Article  CAS  Google Scholar 

  14. Ma LY, Wang DM, Wang Y, Dou GL, Xin HH. Synchronous thermal analysis and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process Technol. 2017;157:65–75.

    Article  CAS  Google Scholar 

  15. Kale GR, Kulkarni BD, Chavan RN. Combined gasification of lignite coal: thermodynamic and application study. J Taiwan Inst Chem Eng. 2014;45:163–73.

    Article  CAS  Google Scholar 

  16. Nimaje DS, Tripathy DP. Characterization of some Indian coals to assess their liability to spontaneous combustion. Fuel. 2016;163:139–47.

    Article  CAS  Google Scholar 

  17. Li SS, Ma XQ, Liu GC, Guo MX. A TG-FTIR investigation to the co-pyrolysis of oil shale with coal. J Anal Appl Pyrolysis. 2016;120:540–8.

    Article  CAS  Google Scholar 

  18. Zhang L, Hower JC, Liu WL. Non-isothermal TG–DSC study on prediction of caking properties of vitrinite-rich concentrates of bituminous coals. Fuel Process Technol. 2017;156:500–4.

    Article  CAS  Google Scholar 

  19. Jayaraman K, Kok MV, Gokalp I. Thermogravimetric and mass spectrometric (TG–MS) analysis and kinetics of coal-biomass blends. Renew Energy. 2017;101:293–300.

    Article  CAS  Google Scholar 

  20. Junga R, Knauer W, Niemiec P, Tańczuk M. Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis. Renew Energy. 2017;111:245–55.

    Article  Google Scholar 

  21. Wang YF, Song YM, Zhi KD, Li Y, Teng YY, He RX, Liu QS. Combustion kinetics of Chinese Shenhua raw coal and its pyrolysis carbocoal. J Energy Inst. 2017;90:624–33.

    Article  CAS  Google Scholar 

  22. Crelling JC, Hippo EJ, Woerner BA, West DP Jr. Combustion characteristics of selected whole coals and macerals. Fuel. 1992;71:151–8.

    Article  CAS  Google Scholar 

  23. Deng J, Zhao JY, Huang AC, Zhang YN, Wang CP, Shu CM. Thermal behavior and micro characterization analysis of second-oxidized coal. J Therm Anal Calorim. 2017;127:439–48.

    Article  CAS  Google Scholar 

  24. Xu T. Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Adv Powder Technol. 2017;28:1841–8.

    Article  CAS  Google Scholar 

  25. He XQ, Liu XF, Nie BS, Song DZ. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel. 2007;206:555–63.

    Article  CAS  Google Scholar 

  26. Parsa MR, Tsukasaki Y, Perkins EL, Chaffee AL. The effect of densification on brown coal physical properties and its spontaneous combustion propensity. Fuel. 2017;193:54–64.

    Article  CAS  Google Scholar 

  27. Zhao CL, Sun YZ, Xiao L, Qin SJ, Wang JX, Duan DJ. The occurrence of barium in a Jurassic coal in the Huangling 2 mine, Ordos Basin, northern China. Fuel. 2014;128:428–32.

    Article  CAS  Google Scholar 

  28. Wang H, Dlugogorski BZ, Kennedy EM. Kinetic modeling of low-temperature oxidation of coal. Combust Flame. 2002;131:452–64.

    Article  CAS  Google Scholar 

  29. Ullah H, Liu GJ, Yousaf B, Alia MU, Abbas Q, Zhou CC. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal. Bioresour Technol. 2017;245:73–80.

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Chen G, Zhang H, Sheng CD. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel. 2014;118:385–91.

    Article  CAS  Google Scholar 

  31. Koniorczy M, Bednarska D. Influence of the mesopore’s diameter on the freezing kinetics of water. Microporous Mesoporous Mater. 2017;250:55–64.

    Article  CAS  Google Scholar 

  32. Azizi K, Moraveji MK, Najafabadi HA. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresour Technol. 2017;243:481–91.

    Article  CAS  PubMed  Google Scholar 

  33. Chen G, Ma XQ, Lin MS, Lin YS, Yu ZS. Study on thermochemical kinetic characteristics and interaction during low temperature oxidation of blended coals. J Energy Inst. 2015;88:221–8.

    Article  CAS  Google Scholar 

  34. Lin YK, Li QS, Li XF, Ji K, Zhang HP, Yu YM, Song YH, Fu Y, Sun LY. Pyrolysates distribution and kinetics of Shenmu long flame coal. Energy Convers Manag. 2014;86:428–34.

    Article  CAS  Google Scholar 

  35. Qi XY, Li QZ, Zhang HJ, Xin HH. Thermodynamic characteristics of coal reaction under low oxygen concentration conditions. J Energy Inst. 2017;90:544–55.

    Article  CAS  Google Scholar 

  36. Stracher GB, Taylor TP. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. Int J Coal Geol. 2004;59:7–17.

    Article  CAS  Google Scholar 

  37. Kizgut S, Yilmaz S. Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis. Fuel Process Technol. 2003;85:103–11.

    Article  CAS  Google Scholar 

  38. Xiao Y, Ma L, Wang ZP, Deng J, Wang W, Xiang X. Research on characteristic temperature in coal spontaneous combustion with thermal gravity analysis method. Coal Sci Technol. 2007;35:73–6.

    Google Scholar 

  39. Deng J, Xiao Y, Li QW, Lu JH, Wen H. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel. 2015;157:261–9.

    Article  CAS  Google Scholar 

  40. Xin HH, Wang DM, Qi XY, Qi GS, Dou GL. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process Technol. 2014;118:287–95.

    Article  CAS  Google Scholar 

  41. Benfell KE, Beamish BB, Rodgers KA. Thermogravimetric analytical procedures for characterizing New Zealand and Eastern Australian coals. Thermochim Acta. 1996;286:67–74.

    Article  Google Scholar 

  42. Tahmasebi A, Yu JL, Su HX, Han YN, Lucas J, Zheng HL, Wall T. A differential scanning calorimetric (DSC) study on the characteristics and behavior of water in low-rank coals. Fuel. 2014;135:243–52.

    Article  CAS  Google Scholar 

  43. Niu ZY, Liu GJ, Yin H, Wu D, Zhou CC. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in situ FTIR. Fuel. 2016;172:1–10.

    Article  CAS  Google Scholar 

  44. Song HJ, Liu GR, Zhang JZ, Wu JH. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Process Technol. 2017;156:454–60.

    Article  CAS  Google Scholar 

  45. Niksa S. A reaction mechanism for tar decomposition at moderate temperatures with any coal type. Fuel. 2017;193:467–76.

    Article  CAS  Google Scholar 

  46. Xi ZL, Li D, Feng ZY. Characteristics of polymorphic foam for inhibiting spontaneous coal combustion. Fuel. 2017;206:334–41.

    Article  CAS  Google Scholar 

  47. Zhu JF, Wang P, Li YB, Li JG, Zhang GH. Dispersion performance and mechanism of polycarboxylates bearing side chains of moderate length in coal-water slurries. Fuel. 2017;190:221–8.

    Article  CAS  Google Scholar 

  48. Dang Y, Zhao LM, Lu XQ, Xu J, Sang PP, Guo S, Zhu HY, Guo WY. Molecular simulation of CO2/CH4 adsorption in brown coal: effect of oxygen-, nitrogen-, and sulfur-containing functional groups. Appl Surf Sci. 2017;423:33–42.

    Article  CAS  Google Scholar 

  49. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.

    Article  CAS  PubMed  Google Scholar 

  50. Lu W, Hu QT, Zhong XX, Wang DM. Gradual self-activation reaction theory of spontaneous combustion of coal. J China Univ Min Technol. 2007;36:111–5.

    CAS  Google Scholar 

  51. Zhou CS, Zhang YL, Wang JF, Xue S, Wu JM, Chang LP. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. Int J Coal Geol. 2017;171:212–22.

    Article  CAS  Google Scholar 

  52. Yousaf B, Liu GJ, Abbas Q, Wang RW, Ali MU, Ullah H, Liu RJ, Zhou CC. Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass- and biochar-coal co-combustion systems. Appl Energy. 2017;208:142–57.

    Article  CAS  Google Scholar 

  53. Zhang YL, Wu JM, Chang LP, Wang JF, Xue S, Li ZF. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: a case study of Shendong coal (China). Int J Coal Geol. 2013;120:41–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the following funds: The National Natural Science Foundation (51504190) and the National Key Research and Development Plan (2016YFC0800102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenbao Li or Chi-Min Shu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wen, H., Shu, CM. et al. Thermokinetic behavior and microcharacterization of low-rank bitumiteoxidization. J Therm Anal Calorim 137, 1693–1705 (2019). https://doi.org/10.1007/s10973-019-08003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08003-3

Keywords

Navigation