Skip to main content
Log in

Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermo-physical properties of NaNO3/KNO3 (solar salt) added with Al2O3 and TiO2 nanoparticles as phase change material in thermal energy storage system were investigated. Initially the Al2O3 and TiO2 nanoparticles were added to NaNO3/KNO3 (60:40) with a concentration of 1%, 3% and 5 mass% using low-energy ball mill. The differential scanning calorimetry instrument is used to measure the thermal properties of the prepared PCM composites. It is found that the phase change temperature and latent heat capacity vary with Al2O3 and TiO2 nanoparticles loading levels. When the loading is not over 3 mass% of Al2O3, the phase change temperature drops, and the latent heat capacity increases up to 23.3%. When the loading is over 3 mass% of Al2O3, the phase change temperature increases, and the latent heat capacity drops to 14.23%. A significant increase in latent heat capacity is found around 3 mass% of Al2O3 loading. When the TiO2 nanoparticle concentration increases, the phase change temperature decreases, and the latent heat capacity increases up to 32.2%. When the TiO2 nanoparticle’s concentration decreases, the phase change temperature increases, and the latent heat capacity decreases. The thermal conductivity of the composites was found to increase with the increase in the loading of nanoparticles. After adding 3% by mass of Al2O3 and TiO2 nanoparticles, the thermal conductivity was found to increase by 8.30 and 8.10%, respectively. From the characterization studies, we found that TiO2 helps to achieve the improved thermo-physical properties and heat storage characteristics for NaNO3/KNO3 which suggests their potential candidate of usage in the thermal energy storage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCM:

Phase change material

DSC:

Differential scanning calorimetry

TGA:

Thermogravimetric analysis

SEM:

Scanning electron microscopy

wt.:

Mass

C :

Specific heat of PCM/water (J kg−1  °C)

H :

Latent heat of phase change material (PCM) (J kg−1)

K :

Thermal conductivity (W m−1 K−1)

T :

Temperature (°C)

References

  1. Dincer I, Rosen M. Thermal energy storage: systems and applications. Hoboken: Wiley; 2002.

    Google Scholar 

  2. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy. 2013;1(104):538–53.

    Article  CAS  Google Scholar 

  3. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.

    Article  CAS  Google Scholar 

  4. Farid MM, Khudhair AM, Razack SA, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45(9–10):1597–615.

    Article  CAS  Google Scholar 

  5. Tao YB, He YL. A review of phase change material and performance enhancement method for latent heat storage system. Renew Sustain Energy Rev. 2018;31(93):245–59.

    Article  CAS  Google Scholar 

  6. Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manag. 2015;15(105):272–84.

    Article  CAS  Google Scholar 

  7. Salyan S, Suresh S. Liquid metal gallium laden organic phase change material for energy storage: an experimental study. Int J Hydrogen Energy. 2018;43(4):2469–83.

    Article  CAS  Google Scholar 

  8. Salyan S, Suresh S. Study of thermo-physical properties and cycling stability of d-Mannitol-copper oxide nanocomposites as phase change materials. J Energy Storage. 2018;28(15):245–55.

    Article  Google Scholar 

  9. Huang Y, Cheng X, Li Y, Yu G, Xu K, Li G. Effect of in situ synthesized nano-MgO on thermal properties of NaNO3–KNO3. Sol Energy. 2018;15(160):208–15.

    Article  CAS  Google Scholar 

  10. Venkitaraj KP, Suresh S. Experimental study on thermal and chemical stability of pentaerythritol blended with low melting alloy as possible PCM for latent heat storage. Exp Thermal Fluid Sci. 2017;1(88):73–87.

    Article  CAS  Google Scholar 

  11. Venkitaraj KP, Suresh S, Praveen B, Venugopal A, Nair SC. Pentaerythritol with alumina nano additives for thermal energy storage applications. J Energy Storage. 2017;1(13):359–77.

    Google Scholar 

  12. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;15(134):373–81.

    Article  CAS  Google Scholar 

  13. Chieruzzi M, Miliozzi A, Crescenzi T, Torre L, Kenny JM. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage. Nanoscale Res Lett. 2015;10(1):273.

    Article  CAS  PubMed Central  Google Scholar 

  14. Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett. 2013;8(1):448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao YJ, Wang RZ, Wang LW, Yu N. Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage). Energy. 2014;1(70):272–7.

    Article  CAS  Google Scholar 

  16. Xiao X, Zhang P, Li M. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manag. 2015;15(105):272–84.

    Article  CAS  Google Scholar 

  17. Singh DK, Suresh S, Singh H. Graphene nanoplatelets enhanced myo-inositol for solar thermal energy storage. Therm Sci Eng Progr. 2017;1(2):1–7.

    Google Scholar 

  18. Singh DK, Suresh S, Singh H, Rose BA, Tassou S, Anantharaman N. Myo-inositol based nano-PCM for solar thermal energy storage. Appl Therm Eng. 2017;5(110):564–72.

    Article  CAS  Google Scholar 

  19. Schuller M, Shao Q, Lalk T. Experimental investigation of the specific heat of a nitrate–alumina nanofluid for solar thermal energy storage systems. Int J Therm Sci. 2015;31(91):142–5.

    Article  CAS  Google Scholar 

  20. Maldonado JM, Fullana-Puig M, Martín M, Solé A, Fernández ÁG, de Gracia A, Cabeza LF. Phase change material selection for thermal energy storage at high temperature range between 210°C and 270°C. Energies. 2018;11(4):861.

    Article  CAS  Google Scholar 

  21. Rao ZH, Zhang GQ. Thermal properties of paraffin wax-based composites containing graphite. Energy Sources Part A Recovery Util Environ Effects. 2011;33(7):587–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Raja Jeyaseelan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Jeyaseelan, T., Azhagesan, N. & Pethurajan, V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2O3 and TiO2 nanoparticles. J Therm Anal Calorim 136, 235–242 (2019). https://doi.org/10.1007/s10973-018-7980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7980-6

Keywords

Navigation