Skip to main content
Log in

Application of differential scanning calorimetry to freeze-dried milk and milk fractions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal profiles of whole freeze-dried raw milk, obtained by differential scanning calorimetry (DSC) upon heating, were compared to those of their concentrate fractions (cream, skimmed milk, acid casein and whey) in order to associate the thermal peaks with the related components. Two peaks associated with fat melting, a glass transition attributed to caseins and a complex exothermic peak associated with lactose and its interactions with the other milk components were observed, in a close relation to the values of water activity of the samples. Freeze drying is the least invasive technique for drying milk, thus the results of this study may be attributed to the thermal transitions of milk components in their native state, unlike what is observed on roller- or spray-dried milk. The DSC technique is confirmed as an effective tool for the evaluation of the thermophysical properties of milk, as modified by different industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murrieta-Pazos I, Gaiani C, Galet L, Cuq B, Desobry S, Scher J. Comparative study of particle structure evolution during water sorption: skim and whole milk powders. Coll Surf B Biointerfaces. 2011;87:1–10.

    Article  CAS  Google Scholar 

  2. Ganesan V, Rosentrater KA, Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders e a review with implications for DDGS. Biosyst Eng. 2008;101:425–35.

    Article  Google Scholar 

  3. Iqbal T, Fitzpatrick JJ. Effect of storage conditions on the wall friction characteristics of three food powders. J Food Eng. 2006;72:273–80.

    Article  Google Scholar 

  4. Schuck P, Mejean S, Dolivet A, Jeantet R, Bhandari B. Keeping quality of dairy ingredients. Lait. 2007;87:481–8.

    Article  CAS  Google Scholar 

  5. Roos YH, Karel M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnol Prog. 1990;7:159–63.

    Article  Google Scholar 

  6. Fitzpatrick JJ, Twomey M, Cerqueira PSM, Descamps N, Roos YH (2006) Glass transition and the caking of food powders. In: CHoPS-05 conference.

  7. Thomas MEC, Scher J, Desobry S. Lactose/β-lactoglobulin interaction during storage of model whey powders. J Dairy Sci. 2004;87:1158–66.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas MEC, Scher J, Desobry-Banon S, Desobry S. Milk powders ageing: effect on physical and functional properties. Crit Rev Food Sci Nutr. 2004;44:297–322.

    Article  CAS  PubMed  Google Scholar 

  9. Szulc K, Nazarko J, Ostrowska-Ligęza E, Lenart A. Effect of fat replacement on flow and thermal properties of dairy powders. LWT–Food Sci Technol. 2016;68:653–8.

    Article  CAS  Google Scholar 

  10. Pugliese A, Paciulli M, Chiavaro E, Mucchetti G. Characterization of commercial dried milk and some of its derivatives by differential scanning calorimetry. J Therm Anal Calorim. 2016;123:2583–90.

    Article  CAS  Google Scholar 

  11. Cal S, Rodríguez-Puente B, Souto C, Concheiro A, Gómez-Amoza JL, Martínez-Pacheco R. Comparison of a spray-dried α-lactose monohydrate with a fully hydrated roller-dried β-lactose. Int J Pharm. 1996;136:13–21.

    Article  CAS  Google Scholar 

  12. Rahman MS, Al-Hakmani H, Al-Alawi H, Al-Mahubi I. Thermal characteristics of freeze-dired camel milk and its major components. Thermochim Acta. 2012;549:116–23.

    Article  CAS  Google Scholar 

  13. Vuataz G. The phase diagram of milk: a new tool for optimising the drying process. Lait. 2002;82:485–500.

    Article  CAS  Google Scholar 

  14. Morgan F, Appolonia Nouzille C, Baechler R, Vuataz G, Raemy A. Lactose crystallisation and early Maillard reaction in skim milk powder and whey protein concentrates. Lait. 2005;85:315–23.

    Article  CAS  Google Scholar 

  15. Jouppila K, Roos YH. Glass transitions and crystallization in milk powders. J Dairy Sci. 1994;77:2907–15.

    Article  CAS  Google Scholar 

  16. Karel M, Lund DB. Physical principle of food preservation, vol. 137. New York: Marcel Dekker, Inc; 2003. p. 117–8.

    Book  Google Scholar 

  17. Haque MK, Roos YH. Water plasticization and crystallization of lactose in spray-dried lactose/protein mixtures. J Food Sci Food Eng Phys Prop. 2004;69:23–9.

    Google Scholar 

  18. Wirkowska M, Ostrowska-Ligęza E, Górska A, Koczon P. Thermal properties of fats extracted from powdered baby formulas. J Therm Anal Calorim. 2012;110:137–43.

    Article  CAS  Google Scholar 

  19. Haque MK, Roos YH. Differences in the physical state and thermal behavior of spray-dried and freeze-dried lactose and lactose/protein mixtures. Innov Food Sci Emerg Technol. 2006;7:62–73.

    Article  CAS  Google Scholar 

  20. Chung HJ, Lim ST. Physical aging of amorphous starches (a review). Starch. 2006;58:599–610.

    Article  CAS  Google Scholar 

  21. Haque MK. Glass transition and enthalpy relaxation of amorphous food saccharides: a review. J Agric Food Chem. 2006;54:5701–17.

    Article  CAS  Google Scholar 

  22. Hogan SA, Famelart MH, O’Callaghan DJ, Schuck P. A novel technique for determining glass–rubber transition in dairy powders. J Food Eng. 2010;99:76–82.

    Article  CAS  Google Scholar 

  23. Haque E, Whittaker AK, Gidley MJ, Deeth HC, Fibrianto K, Bhandari BR. Kinetics of enthalpy relaxation of milk protein concentrate powder upon ageing and its effect on solubility. Food Chem. 2012;134:1368–73.

    Article  CAS  PubMed  Google Scholar 

  24. Roos YH. Importance of glass transition and water activity to spray drying and stability of dairy powders. Lait. 2002;82:475–84.

    Article  CAS  Google Scholar 

  25. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomed. 2013;8:1721–32.

    Article  CAS  Google Scholar 

  26. Bengoechea C, Arrachid A, Guerrero A, Hill SE, Mitchell JR. Relationship between the glass transition temperature and the melt flow behavior for gluten, casein and soya. J Cereal Sci. 2007;45:275–84.

    Article  CAS  Google Scholar 

  27. Kalichevsky MT, Blanshard JMV, Tokarczuck PF. Effect of water content and sugars on the glass transition of casein and sodium caseinate. Int J Food Sci Technol. 1993;28:139–51.

    Article  CAS  Google Scholar 

  28. Gombas A, Szabó-Révész P, Kata M, Regdon G, Erős I. Quantitative determination of crystallinity of α-lactose monohydrate by DSC. J Therm Anal Calorim. 2002;68:503–10.

    Article  CAS  Google Scholar 

  29. Szepes A, Fiebig A, Ulrich J, Szabó-Révész P. Structural study of α-lactose monohydrate subjected to microwave irradiation. J Therm Anal Calorim. 2007;89:757–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Paciulli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugliese, A., Paciulli, M., Chiavaro, E. et al. Application of differential scanning calorimetry to freeze-dried milk and milk fractions. J Therm Anal Calorim 137, 703–709 (2019). https://doi.org/10.1007/s10973-018-7971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7971-7

Keywords

Navigation