Skip to main content
Log in

Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of barium, calcium and zinc salts of the aliphatic dicarboxylic acids on the nucleation ability and formation of β-crystalline form in isotactic polypropylene (iPP) were investigated. The results showed that barium, calcium and zinc salts of aliphatic dicarboxylic acid were related to the number of carbon atoms in the acids, and carbon atomic numbers of 5–8 had good nucleation ability for iPP except calcium adipate and zinc pimelate, in which barium glutarate, calcium suberate and zinc suberate were highly efficient β-nucleating agents for iPP. In addition, the optimal addition amounts of barium glutarate, calcium suberate and zinc suberate were 0.1 mass%, 0.1 mass% and 0.15 mass%, respectively, and the relative contents of β-crystals reached 0.9561, 0.9351 and 0.9447, respectively. The results of mechanical and thermal properties with the optimal addition amount showed that barium glutarate, calcium suberate and zinc suberate improved the toughness and thermal properties but decreased the rigidity of iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Natta G, Pegoraro M, Peraldo M. Stereoregular polymers and stereospecific polymerizations. Polymer. 1967;8(2):671.

    Google Scholar 

  2. Zhang YF, Li D, Chen QJ. Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci. 2017;295(10):1973–82.

    Article  CAS  Google Scholar 

  3. Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131(2):1483–90.

    Article  CAS  Google Scholar 

  4. Yang R, Ding L, Zhang X, Li JC. Nonisothermal crystallization, melting behaviors, and mechanical properties of isotactic polypropylene nucleated with a liquid crystalline polymer. Ind Eng Chem Res. 2018;57(6):2083–93.

    Article  CAS  Google Scholar 

  5. Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49(11):2745–54.

    Article  CAS  Google Scholar 

  6. Zhou PZ, Zhang YF, Lin XF. Thermal stability of nucleation effect of different β nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132(3):1845–52.

    Article  CAS  Google Scholar 

  7. Ren XQ, Zhang YF, He J, Li Y. Nucleation effect of adipic acid metal salts in isotactic polypropylene. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7515-1.

    Article  Google Scholar 

  8. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci B. 2002;41(4–6):1121–71.

    Article  CAS  Google Scholar 

  9. Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.

    Article  CAS  Google Scholar 

  10. Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47(21):7612–24.

    Article  CAS  Google Scholar 

  11. Padden FJ Jr, Keith HD. Spherulitic crystallization in polypropylene. J Appl Phys. 1959;30(10):1479–84.

    Article  CAS  Google Scholar 

  12. Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Macromol Chem Phys. 1964;75(1):134–58.

    Article  Google Scholar 

  13. Papageorgiou DG, Chrissafis K, Bikiaris DN. β-Nucleated polypropylene: processing, properties and nanocomposites. Polym Rev. 2015;55(4):596–629.

    Article  CAS  Google Scholar 

  14. Shi GY, Zhang XD, Cao YH, Hong J. Melting behavior and crystalline order of β-crystalline phase poly (propylene). Macromol Chem Phys. 1993;194(1):269–77.

    Article  CAS  Google Scholar 

  15. Shi GY, Zhang XD. Effect of β-nucleator content on the crystallization and melting behaviour of β-crystalline phase polypropylene. Thermochim Acta. 1992;205:235–43.

    Article  CAS  Google Scholar 

  16. Shi GY, Zhang XD, Qiu ZX. Crystallization kinetics of β-phase poly (propylene). Macromol Chem Phys. 1992;93(3):583–91.

    Article  Google Scholar 

  17. Dou Q, Lu QL. Effect of calcium malonate on the formation of β crystalline form in isotactic poly (propylene). Polym Adv Technol. 2008;19(11):1522–7.

    CAS  Google Scholar 

  18. Dou Q, Lu QL. Effect of magnesium malonate on the formation of the β crystalline form in isotactic polypropylene. J Vinyl Addit Technol. 2008;14(3):136–41.

    Article  CAS  Google Scholar 

  19. Dou Q, Lu QL, Li HD. Effect of metallic salts of malonic acid on the formation of β crystalline form in isotactic polypropylene. J Macromol Sci B. 2008;47(5):900–12.

    Article  CAS  Google Scholar 

  20. Dou Q, Lu QL, Li HD. Effect of metallic salts of glutaric acid on the formation of β-crystalline form in isotactic polypropylene. J Elastomers Plast. 2009;41(6):509–22.

    Article  CAS  Google Scholar 

  21. Dou Q. Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of β crystalline form in isotactic poly (propylene). J Macromol Sci B. 2007;46(6):1063–80.

    Article  CAS  Google Scholar 

  22. Dou Q. A comparison of the effects of calcium glutarate and pimelate on the formation of β crystalline form in isotactic poly (propylene). J Macromol Sci B. 2007;47(1):127–38.

    Article  CAS  Google Scholar 

  23. Dou Q. Effect of calcium salts of glutaric acid and pimelic acid on the formation of β crystalline form in isotactic polypropylene. Polym Plast Technol. 2008;47(9):851–7.

    Article  CAS  Google Scholar 

  24. Varga J, Mudra I, Ehrenstein G. Crystallization and melting of β-nucleated isotactic polypropylene. J Therm Anal Calorim. 1999;56(3):1047–57.

    Article  CAS  Google Scholar 

  25. Kersch M, Schmidt HW, Altstädt V. Influence of different beta-nucleating agents on the morphology of isotactic polypropylene and their toughening effectiveness. Polymer. 2016;98:320–6.

    Article  CAS  Google Scholar 

  26. Menyhárd A, Varga J, Molnár G. Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83(3):625–30.

    Article  CAS  Google Scholar 

  27. Sterzynski T, Øysæd H. Structure modification of isotactic polypropylene by bi-component nucleating systems. Polym Eng Sci. 2004;44(2):352–61.

    Article  CAS  Google Scholar 

  28. Trongtorsak K, Supaphol P, Tantayanon S. Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polym Test. 2004;23(5):533–9.

    Article  CAS  Google Scholar 

  29. Li JX, Cheung WL. Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Technol. 1997;3(2):151–6.

    Article  CAS  Google Scholar 

  30. Chen Y, Yang S, Yang H, Zhang M, Zhang Q, Li Z. Toughness reinforcement in carbon nanotube-filled high impact polypropylene copolymer with β-nucleating agent. Ind Eng Chem Res. 2016;55(32):8733–42.

    Article  CAS  Google Scholar 

  31. Li JX, Cheung WL, Chan CM. On deformation mechanisms of β-polypropylene 2. Changes of lamellar structure caused by tensile load. Polymer. 1999;40(8):2089–102.

    Article  CAS  Google Scholar 

  32. Housmans JW, Gahleitner M, Peters GWM, Meijera HEH. Structure-property relations in molded, nucleated isotactic polypropylene. Polymer. 2009;50(10):2304–19.

    Article  CAS  Google Scholar 

  33. Jiang CQ, Zhao SC, Xin Z. Influence of a novel β-nucleating agent on the structure, mechanical properties, and crystallization behavior of isotactic polypropylene. J Thermoplast Compos. 2015;28(5):610–29.

    Article  CAS  Google Scholar 

  34. Chen Y, Xu M. Comparison of methods for characterizing the effects of nucleating agents on the process of polymer crystallization. Acta Polym Sin. 1998;6:671–8.

    Google Scholar 

  35. Zhang YF, Chen H. Effects of nucleating agent 1,3,5-benzenetricarboxylic acid tris (cyclohexylamide) on properties and crystallization behaviors of isotactic polypropylene. Colloid Polym Sci. 2014;292(2):493–8.

    Article  CAS  Google Scholar 

  36. Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128(2):925–35.

    Article  CAS  Google Scholar 

  37. Zhao SC, Xu N, Xin Z, Jiang CQ. A novel highly efficient β-nucleating agent for isotactic poly-propylene. J Appl Polym Sci. 2012;123(1):108–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21376031) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 16A004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Fei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, XQ., Zhang, YF. Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. J Therm Anal Calorim 137, 563–573 (2019). https://doi.org/10.1007/s10973-018-7958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7958-4

Keywords

Navigation