Skip to main content

Systematic microstructural development with thermal diffusivity behaviour from nanometric to micronic grains of strontium titanate

Abstract

Strontium titanate is a promising candidate for applications in thermoelectric, thermal management applications, and modern electronic devices because of its desirable thermal stability, chemical stability, and semiconducting behaviour. However, the absence of its important systematic development, having grain size from several nanometric up to micronic size with evolving thermal diffusivity behaviour, triggers the need for filling up the vacuum. Two different heat treatments have been carried out onto the samples which were with presintering and without presintering. Nanometer-sized compacted powder samples were sintered from 500 to 1400 °C using 100 °C increments. The parallel characterizations of structural, microstructural and thermal diffusivity properties were systematically carried out. Interestingly, three significant value-differentiated groups: weak, moderate, and strong thermal diffusivity were observed, resulting from the influence of different phonon-scattering mechanisms through a systematic development of microstructural properties for both heat treatments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Hui S, Petric A. Electrical properties of yttrium-doped strontium titanate under reducing conditions. J Electrochem Soc. 2002;149:J1.

    Article  CAS  Google Scholar 

  2. 2.

    Rocca A, Licciulli A, Politi M, Diso D. Rare earth-doped SrTiO3 perovskite formation from xerogels. ISRN Ceram. 2012;2012:1–6.

    Article  CAS  Google Scholar 

  3. 3.

    Silva MRS, Alves MCF, Lima SJG, Soledade LEB, Paris EC, Longo E, et al. Thermal and structural characterization of SrTi1−xNdxO3. J Therm Anal Calorim. 2009;97(2):559–64.

    Article  CAS  Google Scholar 

  4. 4.

    Hulm JK. The dielectric properties of some alkaline earth titanates at low temperatures. Proc Phys Soc A. 1950;63:1184–5.

    Article  Google Scholar 

  5. 5.

    Ichinose N, Komeya K, Ogino N, Tsuge A, Yokomizo Y. Introduction to fine ceramics applications in engineering. Hoboken: Wiley; 1987.

    Google Scholar 

  6. 6.

    Wang Y, Fujinami K, Zhang R, Wan C, Wang N, Ba Y, et al. Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl Phys Express. 2010;3(3):4–7.

    Article  CAS  Google Scholar 

  7. 7.

    Shang P-P, Zhang B-P, Li J-F, Ma N. Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol–gel process and spark plasma sintering. Solid State Sci. 2010;12(8):1341–6.

    Article  CAS  Google Scholar 

  8. 8.

    Smith Á, Martin C, Fayette S, Smith DS. Influence of grain size on the thermal conductivity of tin oxide ceramics. J Eur Ceram Soc. 2000;20:297–302.

    Article  Google Scholar 

  9. 9.

    Rauf A, Yu Q, Jin L, Zhou C. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scr Mater. 2012;66(2):109–12.

    Article  CAS  Google Scholar 

  10. 10.

    Søndergaard M, Bøjesen ED, Borup KA, Christensen S, Christensen M, Iversen BB. Sintering and annealing effects on ZnO microstructure and thermoelectric properties. Acta Mater. 2013;61(9):3314–23.

    Article  CAS  Google Scholar 

  11. 11.

    Chung W. Thermal properties of nano- and microstructures. Pasadena: California Institute of Technology; 2004.

    Google Scholar 

  12. 12.

    Braginsky L, Shklover V, Hofmann H, Bowen P. High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys Rev B. 2004;70(13):134201.

    Article  CAS  Google Scholar 

  13. 13.

    Wang FFY. Treatise on materials science and technology: ceramic fabrication processes, vol. 9. Cambridge: Academic Press; 1976.

    Google Scholar 

  14. 14.

    Tunç Parlak T, Apaydin F, Yildiz K. Formation of SrTiO3 in mechanically activated SrCO3–TiO2 system. J Therm Anal Calorim. 2017;127(1):63–9.

    Article  CAS  Google Scholar 

  15. 15.

    Somiya S. Advanced technical ceramics. Tokyo: Academic Press; 2012.

    Google Scholar 

  16. 16.

    Carter CB, Norton MG. Ceramic materials: science and engineering. New York: Springer; 2013.

    Book  Google Scholar 

  17. 17.

    Szelagowski H, Arvanitidis I, Seetharaman S, Szelagowski H, Arvanitidis I, Seetharaman S. Effective thermal conductivity of porous strontium oxide and strontium carbonate samples. J Appl Phys. 1999;1999(85):193–8.

    Article  Google Scholar 

  18. 18.

    Widodo RD, Manaf A, Viktor RRV, Al-Janan DH. The effect of milling times and annealing on synthesis of strontium titanate ceramics. Int J Innov Res Adv Eng. 2015;2(12):66–70.

    Google Scholar 

  19. 19.

    Ianculescu A, Bráileanu A, Zaharescu M, Guillemet S, Pasuk I, Madarász J, et al. Formation and properties of some Nb-doped SrTiO3-based solid solutions. J Therm Anal Calorim. 2003;72(1):173–80.

    Article  CAS  Google Scholar 

  20. 20.

    Buscaglia MT, Maglia F, Anselmi-Tamburini U, Marré D, Pallecchi I, Ianculescu A, et al. Effect of nanostructure on the thermal conductivity of La-doped SrTiO3 ceramics. J Eur Ceram Soc. 2014;34(2):307–16.

    Article  CAS  Google Scholar 

  21. 21.

    Sundaram SK, Spearing DR, Vienna JD. Environmental issues and waste management technologies in the ceramic and nuclear industries VIII. In: Proceedings of the symposium held at the 104th annual meeting of The American Ceramic Society. Wiley; 2012.

  22. 22.

    Kaus I, Dahl PI, Mastin J, Grande T, Einarsrud MA. Synthesis and characterization of nanocrystalline YSZ powder by smoldering combustion synthesis. J Nanomater. 2006;2006:1–7.

    Article  CAS  Google Scholar 

  23. 23.

    Wang H. Thermal conductivity 27: thermal expansion 15: joint conferences. Tennessee: DEStech Publications, Inc; 2005.

    Google Scholar 

  24. 24.

    Eibl O, Nielsch K, Peranio N, Völklein F. Thermoelectric Bi2Te3 nanomaterials. Hoboken: Wiley; 2015.

    Google Scholar 

  25. 25.

    Yu C, Scullin ML, Huijben M, Ramesh R, Majumdar A. Thermal conductivity reduction in oxygen-deficient strontium titanates. Appl Phys Lett. 2008;92(19):191911.

    Article  CAS  Google Scholar 

  26. 26.

    Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH. Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci. 1976;11(11):2027–35.

    Article  CAS  Google Scholar 

  27. 27.

    Gapais D, Brun JP, Cobbold PR. Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. London: Geological Society of London; 2005.

    Google Scholar 

  28. 28.

    Belyakov A, Yoshikazu S, Toru H, Yuuji K, Kaneaki T. Effect of nano-sized oxides on annealing behaviour of ultrafine grained steels. Mater Trans. 2004;45:2252–8.

    Article  CAS  Google Scholar 

  29. 29.

    Hummel RE. Understanding materials science: history, properties, applications. Florida: Springer; 2004.

    Google Scholar 

  30. 30.

    Zgalat-Lozynskyy O, Ragulya A. Densification kinetics and structural evolution during microwave and pressureless sintering of 15 nm titanium nitride powder. Nanoscale Res Lett. 2016;11(1):1–9.

    Article  CAS  Google Scholar 

  31. 31.

    Parkash O, Kumar D, Christopher CC. Preparation structure and dielectric behaviour of the system Sr1−xLaxTi1–xFexO3 (x ≤ 0.50). J Chem Sci. 2003;115(5–6):649–61.

    Article  CAS  Google Scholar 

  32. 32.

    Roy SC, Bhatnagar C, Sharma GL, Karar N, Chander H. Photoluminescence study of the sol-gel derived (Ba0.5Sr0.5)TiO3 thin films for the characterization of trap states. Jpn J Appl Phys. 2005;44:34–7.

    Article  CAS  Google Scholar 

  33. 33.

    Faoite D, Browne DJ, Chang-Díaz FR, Stanton KT. A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J Mater Sci. 2011;47(10):4211–35.

    Article  CAS  Google Scholar 

  34. 34.

    Bruls RJ, Hintzen HT, Metselaar R. A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds. J Eur Ceram Soc. 2005;25(6):767–79.

    Article  CAS  Google Scholar 

  35. 35.

    Zhang L, Li N, Wang HQ, Zhang Y, Ren F, Liao XX, et al. Tuning the thermal conductivity of strontium titanate through annealing treatments. Chin Phys B. 2017;26(1):1–6.

    Google Scholar 

  36. 36.

    Gorsse S, Bauer Pereira P, Decourt R, Sellier E. Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater. 2010;22(3):988–93.

    Article  CAS  Google Scholar 

  37. 37.

    Muta H, Ieda A, Kurosaki K, Yamanaka S. Thermoelectric properties of lanthanum-doped europium titanate. Mater Trans. 2005;46(7):1466–9.

    Article  CAS  Google Scholar 

  38. 38.

    Raghavan S, Wang H, Dinwiddie RB, Porter WD, Mayo MJ. The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia. Scr Mater. 1998;39(8):1119–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ministry Education Malaysia for MyPhD scholarship and supports from the Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology and Department of Physics, Faculty of Science, Universiti Putra Malaysia are also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Idza Riati Ibrahim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, I.R., Hashim, M., Ismail, I. et al. Systematic microstructural development with thermal diffusivity behaviour from nanometric to micronic grains of strontium titanate. J Therm Anal Calorim 137, 105–119 (2019). https://doi.org/10.1007/s10973-018-7954-8

Download citation

Keywords

  • Thermal diffusivity
  • Thermal conductivity
  • Microstructure
  • Strontium titanate