Skip to main content
Log in

Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, mixed convection heat transfer of the non-Newtonian power-law nanofluid including CuO nanoparticles, inside a partially porous square enclosure with a concentric rotating cylinder and a hot side wall is numerically investigated. Two-phase mixture model is utilized for nanofluid flow simulation and the mixture viscosity and thermal conductivity are computed by Corcione’s correlation. The effect of different angular velocity (− 4000 ≤ Ω ≤ 4000) for various Rayleigh (104 ≤ Ra ≤ 106), Darcy (10−4 ≤ Da ≤ 10−1), power-law index (0.8 ≤ n ≥ 1.2) and effective to base fluid thermal conductivity ratio (keff/kf= 16, 4) are studied on heat transfer. Results are presented and compared in terms of the average Nusselt number, and streamline and isotherm contours. Outcomes show that for different kinds of fluid, depending on the value of Ra, Da, keff/kf and the amount and direction of angular velocity, heat transfer can be improved by augmenting heat convection and also can be deteriorated by increasing viscosity. Consequently, optimal values of Ra, Da, keff/kf and Ω exist in order to maximize the average Nu number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

C :

Consistency index (Nsn m−2)

C p :

Specific heat (J kg−1 K−1)

d p :

Diameter of the nanoparticle (m)

Da :

Darcy number

D ij :

Rate of deformation tensor

f drag :

Drag friction

g :

Gravitational acceleration (ms−2)

Κ :

Permeability of porous medium (m2)

k :

Thermal conductivity (W m−1 K−1)

k b :

Boltzmann constant (J K−1)

n :

Power-law index

Nu :

Nusselt number

P :

Pressure (Pa)

Pr :

Prandtl number

Ra :

Rayleigh number

Re :

Reynolds number

S gen,T :

Thermal entropy generation rate (W m−3 K−1)

T 0 :

Bulk temperature (K)

avg:

Average

c:

Cold

dr:

Drift

f:

Base fluid

h:

Hot

m:

Mixture(nanofluid)

p:

Nanoparticle

s:

Solid medium

tot:

Total

μ :

Dynamic viscosity (kg m−1s−1)

ρ :

Density (kg m−3)

References

  1. Joye DD, Bushinsky JP, Saylor PE. Mixed convection heat transfer at high Grashof number in a vertical tube. Ind Eng Chem Res. 1989;28:1899–903.

    Article  CAS  Google Scholar 

  2. Yousofvand R, Derakhshan S, Ghasemi K, et al. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017;133:73–90.

    Article  Google Scholar 

  3. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7156-4.

    Article  Google Scholar 

  4. Hussain SH, Hussein AK. Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating circular cylinder at different vertical locations. Int Commun Heat Mass Transf. 2011;38:263–74.

    Article  Google Scholar 

  5. Kimura T, Takeuchi M, Miyagawa K. Effects of inner rotating horizontal cylinder on heat transfer in a differentially heated enclosure. Heat Transf Jpn Res. 1995;24:2605–11.

    Google Scholar 

  6. Selimefendigil F, Öztop HF. Numerical investigation and reduced order model of mixed convection at a backward facing step with a rotating cylinder subjected to nanofluid. Comput Fluids. 2015;109:27–37.

    Article  Google Scholar 

  7. Selimefendigil F, Öztop HF. Forced convection of ferrofluids in a vented cavity with a rotating cylinder. Int J Therm Sci. 2014;86:258–75.

    Article  CAS  Google Scholar 

  8. Emami RY, Siavashi M, Moghaddam GS. The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018;29:519–36.

    Article  CAS  Google Scholar 

  9. Göktepe S, Atalık K, Ertürk H. Comparison of single and two-phase models for nanofluid convection at the entrance of a uniformly heated tube. Int J Therm Sci. 2014;80:83–92.

    Article  Google Scholar 

  10. Haghshenas Fard M, Esfahany MN, Talaie MR. Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model. Int Commun Heat Mass Transf. 2010;37:91–7.

    Article  CAS  Google Scholar 

  11. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  12. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numer Heat Transf Part A Appl. 2017;71:1251–73.

    Article  CAS  Google Scholar 

  13. Siavashi M, Talesh Bahrami HR, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl Therm Eng. 2018;138:465–74.

    Article  CAS  Google Scholar 

  14. Ghasemi K, Siavashi M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq. 2017;233:415–30.

    Article  CAS  Google Scholar 

  15. Sheremet MA, Dinarvand S, Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Physica E. 2015;69:332–41.

    Article  CAS  Google Scholar 

  16. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29:1326–36.

    Article  Google Scholar 

  17. Izadi M, Hoghoughi G, Mohebbi R, et al. Nanoparticle migration and natural convection heat transfer of Cu–water nanofluid inside a porous undulant-wall enclosure using LTNE and two-phase model. J Mol Liq. 2018;261:357–372.

    Article  CAS  Google Scholar 

  18. Hussain S, Mehmood K, Sagheer M, et al. Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure. Int J Heat Mass Transf. 2018;122:1283–97.

    Article  CAS  Google Scholar 

  19. Rajarathinam M, Nithyadevi N, Chamkha AJ. Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid. Adv Powder Technol. 2017;29:590–605.

    Article  CAS  Google Scholar 

  20. Astanina MS, Sheremet MA, Oztop HF, et al. Mixed convection of Al2O3-water nanofluid in a lid-driven cavity having two porous layers. Int J Heat Mass Transf. 2018;118:527–37.

    Article  CAS  Google Scholar 

  21. Nithyadevi N, Shamadhani Begum A, Oztop HF, et al. Mixed convection analysis in heat transfer enhancement of a nanofluid filled porous enclosure with various wall speed ratios. Int J Heat Mass Transf. 2017;113:716–29.

    Article  CAS  Google Scholar 

  22. Chamkha A, Rashad A, Mansour M, et al. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29:052001.

    Article  CAS  Google Scholar 

  23. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    Article  CAS  Google Scholar 

  24. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29:142–56.

    Article  CAS  Google Scholar 

  25. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    Article  CAS  Google Scholar 

  26. Estellé P, Mahian O, Maré T, et al. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128:1765–70.

    Article  CAS  Google Scholar 

  27. Rashidi I, Mahian O, Lorenzini G, et al. Natural convection of Al2O3/water nanofluid in a square cavity: effects of heterogeneous heating. Int J Heat Mass Transf. 2014;74:391–402.

    Article  CAS  Google Scholar 

  28. Chhabra RP, Richardson JF. Non-Newtonian flow and applied rheology: engineering applications. Oxford: Butterworth-Heinemann; 2011.

    Google Scholar 

  29. Kefayati GR. FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci. 2015;95:29–46.

    Article  CAS  Google Scholar 

  30. Kefayati GHR. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;112:709–44.

    Article  CAS  Google Scholar 

  31. Kefayati GHR, Che Sidik NA. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (part II, entropy generation). Powder Technol. 2017;305:679–703.

    Article  CAS  Google Scholar 

  32. Kefayati GHR. Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;108:1481–500.

    Article  Google Scholar 

  33. Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Article  Google Scholar 

  34. Garoosi F, Hoseininejad F. Numerical study of natural and mixed convection heat transfer between differentially heated cylinders in an adiabatic enclosure filled with nanofluid. J Mol Liq. 2016;215:1–17.

    Article  CAS  Google Scholar 

  35. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. In: Technical Research Centre of Finland, Finland, 1996.

  36. Nithiarasu P, Seetharamu K, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf. 1997;40:3955–67.

    Article  CAS  Google Scholar 

  37. Turan O, Sachdeva A, Chakraborty N, et al. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Nonnewton Fluid Mech. 2011;166:1049–63.

    Article  CAS  Google Scholar 

  38. Khezzar L, Siginer D, Vinogradov I. Natural convection of power law fluids in inclined cavities. Int J Therm Sci. 2012;53:8–17.

    Article  Google Scholar 

  39. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  40. Mohsenian S, Ramiar A, Ranjbar A. Numerical study of laminar non-Newtonian nanofluid flow in a T-Junction: investigation of viscous dissipation and temperature dependent properties. Appl Therm Eng. 2016;108:221–32.

    Article  CAS  Google Scholar 

  41. Lam PAK, Prakash KA. A numerical study on natural convection and entropy generation in a porous enclosure with heat sources. Int J Heat Mass Transf. 2014;69:390–407.

    Article  Google Scholar 

  42. Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304–21.

    Article  CAS  Google Scholar 

  43. Kim GB, Hyun JM, Kwak HS. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int J Heat Mass Transf. 2003;46:3605–17.

    Article  Google Scholar 

  44. Kefayati G. Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 2016;299:127–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingang Xiong or Mohammad Hossein Doranehgard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siavashi, M., Karimi, K., Xiong, Q. et al. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim 137, 267–287 (2019). https://doi.org/10.1007/s10973-018-7945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7945-9

Keywords

Navigation